


### Nitrogen Oxides Reduction: DeNOx State of perfromance across industries and future prospectives





### CONTENTS







NOx Pollution status across EU

DeNOx Technology and application



•

Case Study: make your investment worthy



Conclusions



### NOx Pollution Across EU: Potential Hazard



#### Effect on human health

Damage to human respiratory tract with increased risk of heart and lung desease

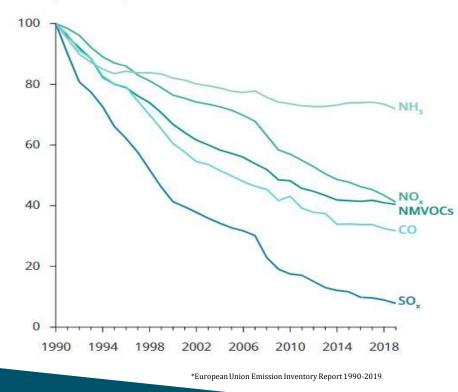
#### Acidification

Both Sulphur and Nitrogen oxides react with water in the atmosphere, causing acid rain and acidification of soil and water

#### Ozone layer depletion

Nitrogen oxides react with the Ozone layer, producing oxygen and NO2 and depleting its abundance

#### Effect on the ecosystem


The diversity of ecosystems is greatly impacted by the unchecked emission of pollutants into our atmosphere

#### NOx Pollution Across EU: Where are we now



#### Nitrogen Oxides emission (NOx) in the EU-28 from 1990 to 2018\*

Index (1990 = 100)



#### **NOx Emission results**

- 3<sup>rd</sup> most targeted pollutant in new emission regulation
- 59% Reduction of emission in the past 20 years
- Between 2018 and 2019 NOx emission dropped by 5.2%



### NOx Pollution Across EU: How did we get there?

We changed the way of thinking about emissions, especially in Energy production

- Switch from coal to gas for boiler
- Usage of primary measure and optimized combustion technology
- Implementation of secondary measure: DeNOx Systems now frequently used in Industry





#### NOx Pollution Across EU: Where We Want to Be

|             |     |       |     |      | 2030            |                 |       |     |                   |                 |
|-------------|-----|-------|-----|------|-----------------|-----------------|-------|-----|-------------------|-----------------|
| Country     | NH, | NMVOC | NO, | PM25 | SO <sub>2</sub> | NH <sub>3</sub> | NMVOC | NO, | PM <sub>2.5</sub> | SO <sub>2</sub> |
| Austria     | •   | ~     | *   | -    | ~               | •               | ~     | ٠   | •                 | *               |
| Belgium     | ~   | ~     | ~   | ~    | ~               | ~               | ~     | •   | ~                 | ~               |
| Bulgaria    | ~   | •     | ~   | •    | ~               | ×               | •     | •   | •                 | ~               |
| Croatia     | ~   | *     | ~   | *    | ~               | •               | •     | •   | •                 | ~               |
| Cyprus      | ×   | × .   | •   | ×    | •               | *               | •     | •   | •                 | •               |
| Czechia     | *   | *     | ~   | *    | *               | •               | •     | ٠   | •                 | •               |
| Denmark     | •   | *     | *   | *    | *               | •               | *     | •   | •                 | -               |
| Estonia     | •   | *     | ~   | *    | *               | •               | *     | *   | *                 | -               |
| Finland     | •   | *     | *   | *    | *               | •               | •     | •   | ~                 |                 |
| France      | × . | *     | × . | *    | *               | •               | *     | ٠   | •                 | *               |
| Germany     | •   | *     | •   | *    | *               | •               | *     | ٠   | •                 | •               |
| Greece      | *   | *     | *   | *    | *               | *               | •     | •   | •                 | •               |
| Hungary     | •   | *     | *   | •    | ~               | •               | •     | ٠   | •                 | ٠               |
| Ireland     | •   | •     | *   | *    | *               | •               | •     | •   | •                 | ~               |
| Italy       | *   | *     | *   | *    | *               | •               | •     | •   | •                 |                 |
| Latvia      | •   | ~     | •   | ~    | ~               | •               | •     | •   | •                 | ~               |
| Lithuania   | •   | •     | ٠   | -    | ~               | •               | •     | ٠   | ~                 | •               |
| Luxembourg  | •   | *     | ~   | *    | ~               | •               | •     | •   | ~                 | ~               |
| Malta       | ~   | •     | ~   | *    | ~               | ~               | •     | ٠   | •                 | ~               |
| Netherlands | ~   | ~     | ×   | ~    | ~               | •               | ~     | •   | ~                 | ~               |
| Poland      | ~   | •     | •   | ~    | ~               | •               | •     | •   | •                 | •               |
| Portugal    | ~   | *     | ×   | *    | ~               | •               | •     | •   | •                 | •               |
| Romania     | *   | *     | •   | •    | *               | •               | •     | •   | •                 | •               |
| Slovakia    | •   | *     | *   | *    | *               | •               | *     | •   | ~                 | •               |
| Slovenia    | ~   | *     | ×   | ~    | ~               | •               | •     | ٠   | ٠                 | ٠               |
| Spain       | •   | *     | ×   | •    | ~               | •               | ٠     | ٠   | ٠                 | •               |
| Sweden      | •   | *     | •   | *    | *               | •               | *     | ٠   | ×                 | *               |
| EU-27       | *   | *     | *   | 4    | *               | •               | •     | •   | •                 | •               |

Current emission levels below the emission reduction commitment Emission reduction needed by less than 10 % from current levels

Emission reduction needed by 10 % to 30 % from current levels

Emission reduction needed by 10 % to 50 % from current levels

Emission reduction needed by 50 % to 50 % from current levels

Emission reduction needed by more than 50 % from current levels

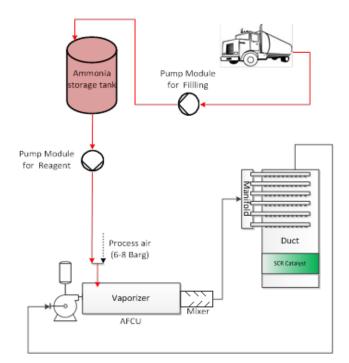
#### New Target coming from Gothenburg agreement

 Most of the EU members complied with NOx emission targets of 2020

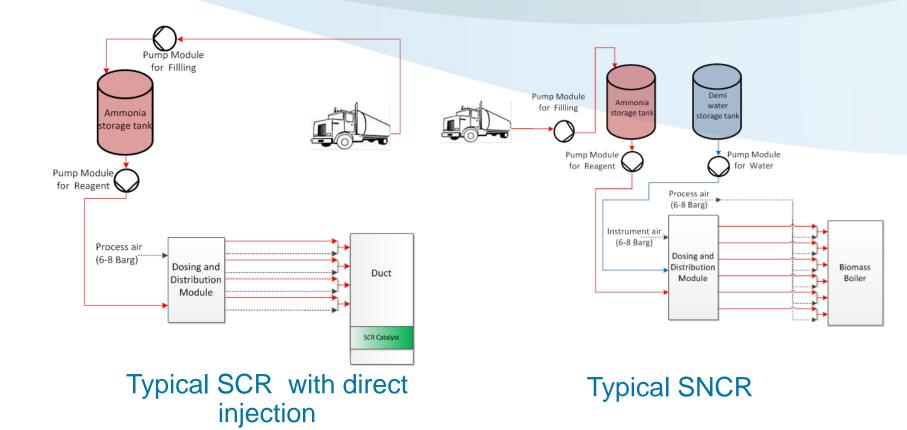
 Most of the EU members are more than 20% away from 2030 target

• Avg distance from Gothenburg target in EU27 is 35%



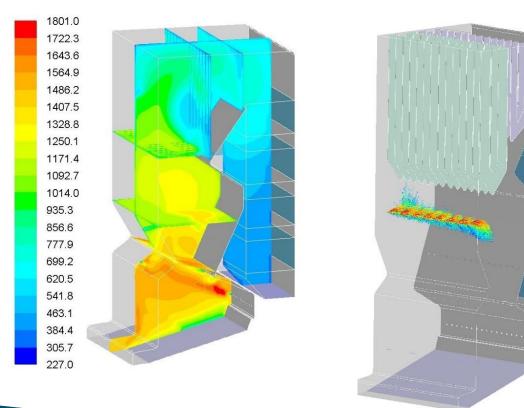

### NOx Pollution Across EU: Making the most from Secondary Measures

What are Secondary Measures?


- Adsorption and Absorption of NOx using solvents
- DeNOx SNCR Technology
- DeNOx SCR Technology



### **DeNOx system**




Typical SCR with ext. evaporation





#### **DENOX SNCR SYSTEM**




#### SELECTIVE NON CATALYTIC REDUCTION

- NOx conversion efficiency
  - Up to 80%
- High operating temperature range 850 950 °C
- Ammonia or Urea reagent
- Dilution water might be needed
- Multiple injection point designed for maximum area coverage
- Multiple injection layer for boiler operation changes



### **DeNOx SCR System**



#### **SELECTIVE CATALYTIC REDUCTION**

- High NOx conversion efficiency
  Up to 99%
- Low operating temperature range 180 450 °C
- Ammonia or Urea reagent
- Catalyst design, chemistry and geometry according to your plant needs
- We provide several type of catalyst:
  - Plate type (coated metallic substrate),
  - Honeycomb type (full body ceramic extruded)
  - corrugated type



#### DeNOx Technology: Where can we go

What results can be reached by DeNOx system?

 Higher NOx abatement imply higher NH3 or CH4N2O (Urea) consumption due to stoichiometry of the reaction

> $4NO + 4 NH3 \rightarrow 4N2 + 6H2O$ NO + NO2 + 2NH3 → 2N2 + 3H2O

- DeNOx SNCR Technology requires higher reagent consumption
- DeNOx SCR Technology requires higher CAPEX but can get to the lowest achievable emission and optimize reagent consumption



#### **DeNOx SCR System – external evaporation**

Case Study: Bio Methanol plant



#### Methanol Unit

- 300,000 Nm3/h data
- NOx emission requirement (BREF 2021\*) 150-10 mg/Nm3
- 95% NOx Reduction
- NH3 slip < 2 mg/Nm3 @ 3% O2



### DeNOx SCR System – direct injection



#### Case Study – Amager Bakke WTE

- 2x 840 tpd WTE
- NOx Emission requirement (BREF 2019) 50-150 mg/Nm3
- 96% NOx Reduction
- NH3 slip < 2 mg/Nm3 @ 11% O2





### DeNOx Low –T SCR Technology



#### The BAT for Saving your Energy

- NOx conversion efficiency Up to 95%
- Lowest operating temperature range 150 200  $^\circ C$
- Ammonia reagent
- External Evaporation of reagent
- Significant lower OPEX

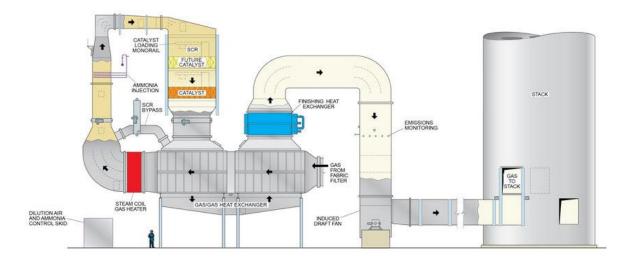


#### How do We get the Most from those Technology?

Needs to Understand what is the technology limit

99.9% of the DeNOx Systems installed today must answer to one customer need: Can I run my plant in compliance with the current regulation?

BUT... is it the right question?






### What if... Case study for DeNOx SCR

#### Avg Size WTE DeNOx Installation actual performances

- Flowrate 28600 Nm3/h
- NH3 solution Consumption 22 kg/h
- DeNOx efficiency 80%
- NOx emitted in the atmosphere 80 mg/Nm3





### What if... Case study for DeNOx SCR

Avg Size WTE DeNOx SCR Installation Maximum Performances

- Flowrate 28600 Nm3/h
- NH3 solution Consumption 27 kg/h
- DeNOx efficiency 95%
- NOx emitted in the atmosphere 20 mg/Nm3
- 14.5 ton/year of NOx SAVED



### What if... Case study for DeNOx SCR

Avg Size WTE DeNOx SCR Installation-Cost Benefit comparison

|                      | OPEX | CAPEX |
|----------------------|------|-------|
| Actual CASE          | 100  | 100   |
|                      |      |       |
| Maximum performences | 120  | 110   |

10% CAPEX and 20% OPEX more for 14.5 ton/y NOx saved



# Conclusion: what does the emission limit range imply?

- Once a DeNOx Technology is required the impact in going from higher to lower Nox emission within the range is < 20% (i.e. for WTE 50-150 mg/Nm3)</li>
- If SCR Technology is required, the increase in reagent consumption is smaller compared with SNCR system
- The most complicated scenario is switching from SNCR to SCR technology



#### DeNOx Smart Installation: How do we Achieve our target



Combined effort for 2030:

- Policy Maker: Trust the technology
- End User: ask for what you can achieve not what you should achieve
  - System Suppliers: more flexibility and ready-to-improve system

## FLOWVISION

#### Your Best Partner for Emission Control

Thank you for your attention