

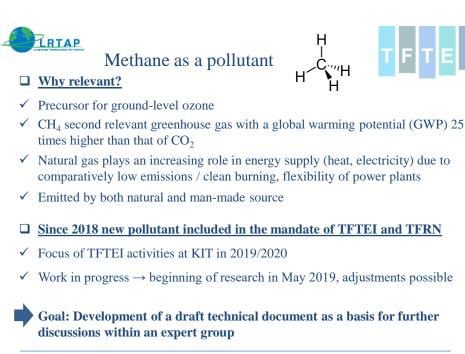
Technical Work on CH₄ Emissions from Waste and Natural Gas Network

Simon Glöser-Chahoud (TFTEI Technical Secretariat)

5th TFTEI Annual Meeting - Ottawa, Canada, October, 22-24, 2019

1

Methane as a pollutant

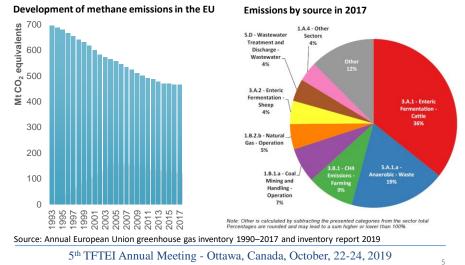

- □ <u>Why relevant?</u>
- ✓ Precursor for ground-level ozone
- ✓ CH₄ second relevant greenhouse gas with a global warming potential (GWP) 25 times higher than that of CO₂
- ✓ Natural gas plays an increasing role in energy supply (heat, electricity) due to comparatively low emissions / clean burning, flexibility of power plants

GREENHOUSE GAS EMISSIONS in Mt CO ₂ equivalents	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Net CO ₂ emissions/removals	4 2 1 2	3 936	3 870	3 986	3 830	3 4 9 2	3 6 1 5	3 482	3 4 2 4	3 333	3 176	3 208	3 198	3 245
CO ₂ emissions (without LULUCF)	4 478	4 225	4 189	4 3 1 5	4 171	3 833	3 949	3 804	3 746	3 658	3 489	3 522	3 505	3 523
CH4	740	679	618	557	523	511	501	491	487	476	469	469	465	466
N ₂ O	401	360	323	303	283	267	257	253	250	250	254	250	254	256
HFCs	29	44	55	77	97	98	104	106	109	111	114	110	107	105
PFCs	26	17	12	7	5	3	4	4	4	4	3	4	4	3
Unspecified mix of HFCs and PFCs	6	6	3	1	1	2	1	1	1	1	1	1	1	2
SF ₆	11	15	11	8	7	6	6	6	6	6	6	6	6	7
NF ₃	0.02	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.05
Total (with net CO ₂ emissions/removals)	5 4 2 5	5 0 5 8	4 891	4 9 3 9	4 746	4 380	4 488	4 3 4 3	4 281	4 181	4 023	4 0 4 7	4 0 3 6	4 084
Total (without CO2 from LULUCF)	5 691	5 3 4 6	5 2 1 0	5 268	5 087	4 721	4 822	4 665	4 603	4 507	4 335	4 361	4 3 4 3	4 363
Total (without LULUCF)	5 6 6 0	5 3 1 8	5 179	5 2 3 8	5 0 5 8	4 692	4 794	4 6 3 6	4 573	4 479	4 307	4 3 37	4 313	4 3 3 3

Source: Annual European Union greenhouse gas inventory 1990–2017 and inventory report 2019

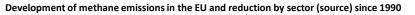
EECCA_CG/TFTEI – Joint Workshop, Saint Petersburg (RF), September 20, 2018

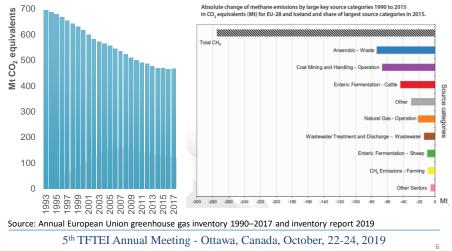
3



5th TFTEI Annual Meeting - Ottawa, Canada, October, 22-24, 2019

Focus on European emissions in a first step:



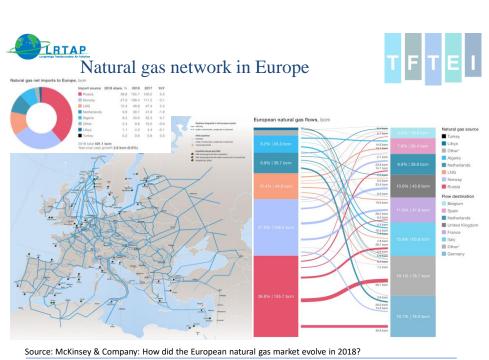


RRTAP Sources of methane emissions in Europe

Focus on European emissions in a first step:

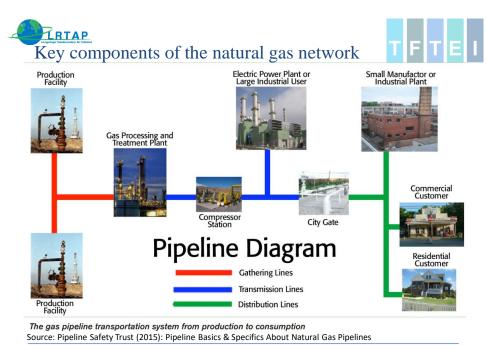
Agenda

□ Methane as a new pollutant included in the mandate of TFTEI

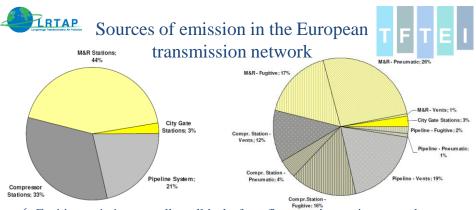

$\hfill\square$ Transport system of natural gas and emissions in Europe

□ Methane emissions from waste storage / landfills

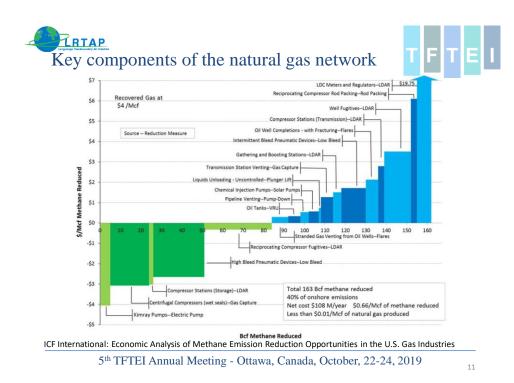
Technical measures and costs of emission reduction


 \Box Next steps and ongoing work on CH₄

5th TFTEI Annual Meeting - Ottawa, Canada, October, 22-24, 2019


5th TFTEI Annual Meeting - Ottawa, Canada, October, 22-24, 2019

7


- ✓ Fugitive emissions are all small leaks from flanges, pipe equipment, valves, joints, etc. that are more or less continuous sources.
- ✓ Vented emissions include intended vents for maintenance or operational reasons and vents from incidents, when the content of the gas equipment is released to the atmosphere.
- ✓ Pneumatic emissions are all emissions caused by gas operating valves and other devices, continuous as well as intermittent emissions.

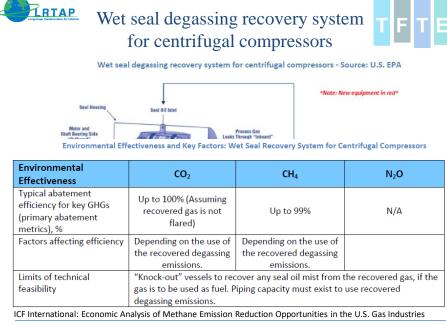
Source: E.ON Ruhrgas: REDUCTION OF METHANE EMISSIONS IN THE EU NATURAL GAS INDUSTRY

5th TFTEI Annual Meeting - Ottawa, Canada, October, 22-24, 2019

10

q

11

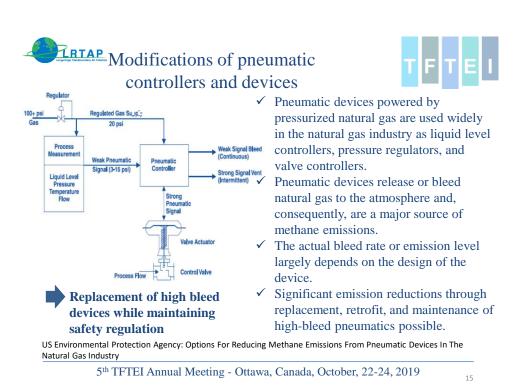

ICF International: Economic Analysis of Methane Emission Reduction Opportunities in the U.S. Gas Industries 5th TFTEI Annual Meeting - Ottawa, Canada, October, 22-24, 2019

Seal oil circulation pump

*Seal oil is at compressor discharge pressure

FLARE

12


5th TFTEI Annual Meeting - Ottawa, Canada, October, 22-24, 2019

Environmental Effectiveness	CO ₂	CH ₄	N ₂ O				
Typical abatement efficiency for key GHGs (primary abatement metrics), %	97%	97%	0%				
Factors affecting efficiency	See below	See below					
Limits of technical feasibility	The compressor pressure must be below 3,000 psi and the temperature must be below 300° F. Furthermore; compressors should not be towards the end of their life.						
CF International: Economic Analysis of Methane Emission Reduction Opportunities in the U.S. Gas Industries							

5th TFTEI Annual Meeting - Ottawa, Canada, October, 22-24, 2019

. 1	•		• •	•		TFT
reauc	ing pr	neumat	ic emis	sions		
Exhibit 4: Ec	onomic Benef	its of Reducing P	neumatic Devic	e Emissions		
Action	Cost ^a (\$)	Bleed Rate Reductions ^b (Mcf/ yr/device)	Annual Savings ^c (\$/year)	Payback Period (months)	IRR ^d (%)	
Replacement						1
Level Controllers						1
High-bleed to low-bleed	513	166	1,165	6	226	
Pressure Controllers						
High-bleed to low-bleed	1,809	228	1,596	14	84	
Airset metal to soft-seal	104	219	1,533	<1	>1,400	
Retrofit						
Level Controllers						1
Mizer	675	219	1,533	6	226	
Large orifice to small	41	184	1,288	<1	>3,100	
Large nozzle to small	189	131	917	3	>450	
Pressure Controllers						
Large orifice to small	41	184	1,288	<1	>3,100	
Maintenance						
All types]
Reduce supply pressure	207	175	1,225	3	>500	
Repair leaks, retune	31	44	308	2	>900	
Level Controllers						Source: US Environmenta
Change gain setting	0	88	616	Immediate	-	Protection Agency (2006)
Positioners						Options For Reducing Me
Remove unnecessary	0	158	1,106	Immediate		Emissions From Pneumat
Implementation costs represent average costs for Fisi # Bleed rate reduction = change in bleed rate schlnr x 8, ° Savings based on \$7.00/Mcf cost of gas. Internal rate of return (IRR) calculated over 5 years.	ter brand pneumatic instru 760 hr/yr.	uments installed.				Devices In The Natural Ga

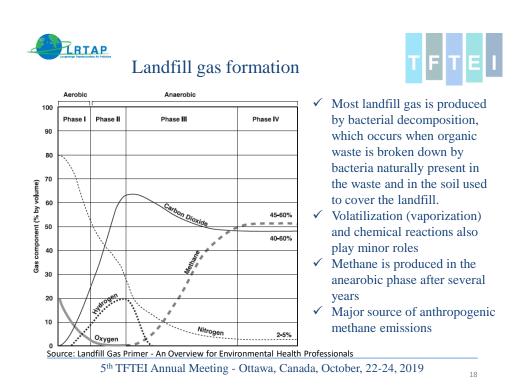
Agenda

□ Methane as a new pollutant included in the mandate of TFTEI

Transport system of natural gas and emissions in Europe

□ Methane emissions from waste storage / landfills

Technical measures and costs of emission reduction


 \Box Next steps and ongoing work on CH₄

5th TFTEI Annual Meeting - Ottawa, Canada, October, 22-24, 2019

17

17

RTAP

Landfill gas as an important source of methane emission

nan-made methane emiss

odorless, tasteless, and colorless

odoriess, tasteless, and coloriess.

at very low concentrations.

Hydrogen is an odorless, colorless gas.

Carbon monoxide is an odorless, colorless gas.

Ammonia is a colorless gas with a pungent odor.

Methane is a naturally occurring gas. It is colorless and odorless. Landfills are the single largest source of U.S.

Carbon dioxide is naturally found at small concentrations in the

atmosphere (0.03%). It is colorless, odorless, and slightly acidic

Nitrogen comprises approximately 79% of the atmosphere. It is

Oxygen comprises approximately 21% of the atmosphere. It is

NMOCs are organic compounds (i.e., compounds that contain carbon). (Methane is an organic compound but is not consid-

ered an NMOC.) NMOCs may occur naturally or be formed by

synthetic chemical processes. NMOCs most commonly found in

landfills include acrylonitrile, benzene, 1,1-dichloroethane, 1,2cis dichloroethylene, dichloromethane, carbonyl sulfide, ethyl-

benzene, hexane, methyl ethyl ketone, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylenes.

Sulfides (e.g., hydrogen sulfide, dimethyl sulfide, mercaptans) are naturally occurring gases that give the landfill gas mixture

its rotten-egg smell. Sulfides can cause unpleasant odors even

Table 2-1: Typical Landfill Gas Comp

Percent by Volu

45-60

40-60

2-5

0.1-1

0 1-1

0-1

0-0.2

0-0.2

0.01-0.6

Component

carbon dioxide

methane

nitroger

oxygen

ammonia

NMOCs

organic

sulfides

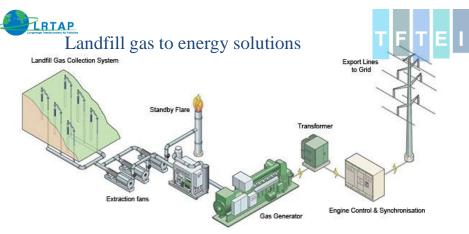
hydrogen

19

carbon monoxide

(non-methar

compounds)


un					
ion					
✓	Landfill gas is	s co	mpo	sed	of
	a mixture of d	liffe	erent	gas	ses.

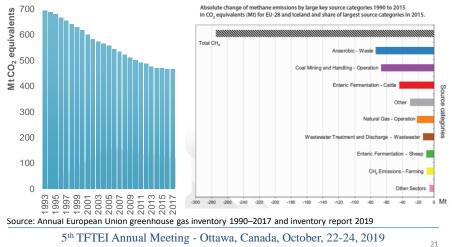
- ✓ By volume, landfill gas typically contains 45% to 60% methane and 40% to 60% carbon dioxide.
- ✓ Landfill gas also includes small amounts of nitrogen, oxygen, ammonia, sulfides, hydrogen, carbon monoxide, and non methane organic compounds (NMOCs) such as trichloroethylene, benzene, and vinyl chloride.

Source: Landfill Gas Primer - An Overview for Environmental Health Professionals

5th TFTEI Annual Meeting - Ottawa, Canada, October, 22-24, 2019

19

- ✓ Regulation for gas collection depends on size and age of the landfill and the estimated emissions
- ✓ Landfill gas to energy solutions have been installed at larger landfills (see reduction since 1990)
- ✓ Small scale energy plants and micro reaction technology are important technological developments for further emission reduction in Europe


5th TFTEI Annual Meeting - Ottawa, Canada, October, 22-24, 2019

Sources of methane emissions in Europe

Focus on European emissions in a first step:

Development of methane emissions in the EU and reduction by sector (source) since 1990

Conclusions, next steps

Conclusions

- ✓ Methane emissions from natural gas network show high diversity (fugitive emissions, emissions from pneumatic devices, venting)
 - ✓ Reduction measures include technical and organizational components
 - ✓ Particularly replacement of high bleed pneumatic devices and new concepts for centrifugal compressors (seal oil degassing) are promising solutions
- ✓ Landfill gas collected at larger sites for energy production, small scale solutions have potentials for further emission reduction → focus of technical report

Next steps

- ✓ Development of a draft technical document as a basis for further development
- ✓ Establishment of a working group
- ✓ Cooperation with TFIAM planned for the prioritization of emission control measures and their implementation in the respective models

^{5&}lt;sup>th</sup> TFTEI Annual Meeting - Ottawa, Canada, October, 22-24, 2019

Thank you very much for your attention! Questions?

TFTEI Technical Secretariat

