Some deNOx process for large combustion systems

Christophe CORD'HOMME CNIM Group Business & Products Development Director

> LOB ENIM INNOVATE AND ACT

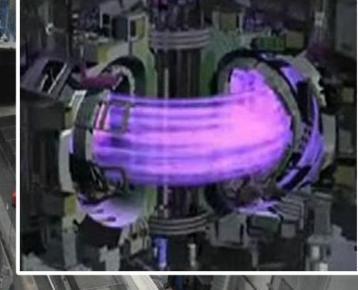
3rd TFTEI Annual Meeting UN-ECE CONVENTION ON LONG-RANGE TRANSBOUNDARY AIR POLLUTION - Rome, October, 20, 2017

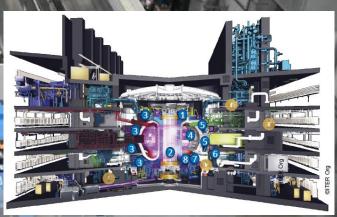
An international family-owned industrial group created in 1856

Workshop in 1895

The turn key project culture a former Naval Shipyard!

ENIM TURNKEY PROJECT designer and supplier for Environment and Energy...


WtE Sheffield, UK


3rd TFTEI Annual Meeting - Rome

ccordhomme@cnim.com

... Designing and building High Tech industrial EQUIPMENT and SYSTEMS...

MACHINE 2

Energy for the Future ! Radial plates for ITER FUSION reactor! 20/10/2017

3rd TFTEI Annual Meeting - Rome

ccordhomme@chim.co

EXPERTS

SERVICE CONTRACTING ENGINEERING

20/10/2017

Completed by SERVICES like engineering, project management, commissioning, Operation & Maintenance, retrofitting...

3rd TFTEI Annual Meeting - Rome

ccordhomme@cnim.com

ENIM: Innovate and Act for Energy Transition and Circular Economy! (80% of Group orders in 2016)

Thiverval sorting & WtE, Fr

Energy Transition : Energy management and efficiency of power plants and industrial sites

ENIM recovers Energy from Municipal Solid Waste of 100 million people around the world!

A State and the second state

Torino WtE, Italy by

20/10/2017

Best Available Techniques for:

- Waste combustion
- Energy recovery
- Flue gas cleaning
- Power production

OD CNIM Group 443 Flue Gas Treatment lines in 26 countries since 1952!

WtE Amagerforbraending, Copenhagen, Denmark

Credit

Service States - Contemport of the Contemport of the service of th

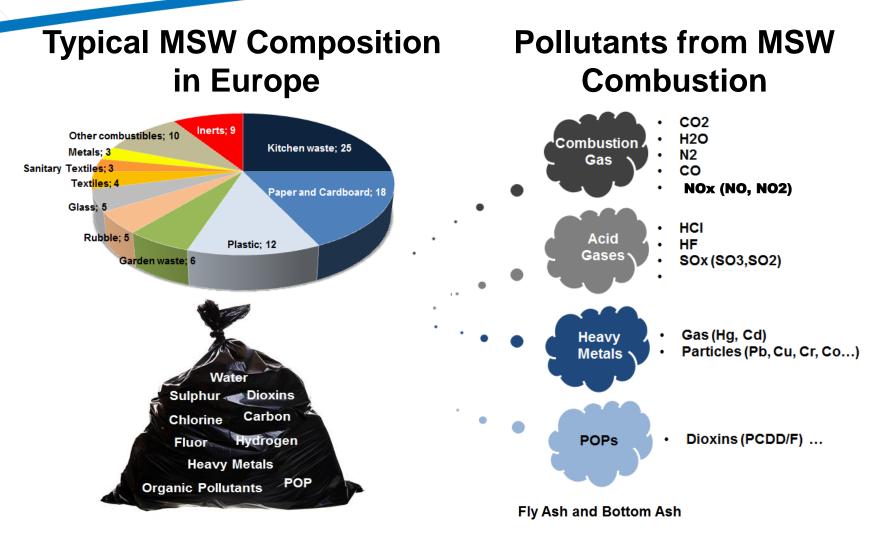
A. Market 4.

=I Annual Meeting - Rome

ccordhomme@cnim.com

FLUE GAS TREATMENT company

Integrated and patented solutions to reduce all kind of emissions


- Turn-key flue gas treatment for
- Waste-to-Energy Plants,
- Biomass-to-Power Plants,
- Fossil fuel fired Power plant (FGD)
- Scrubbers for marine industry
- Metal recovery from combustion residues

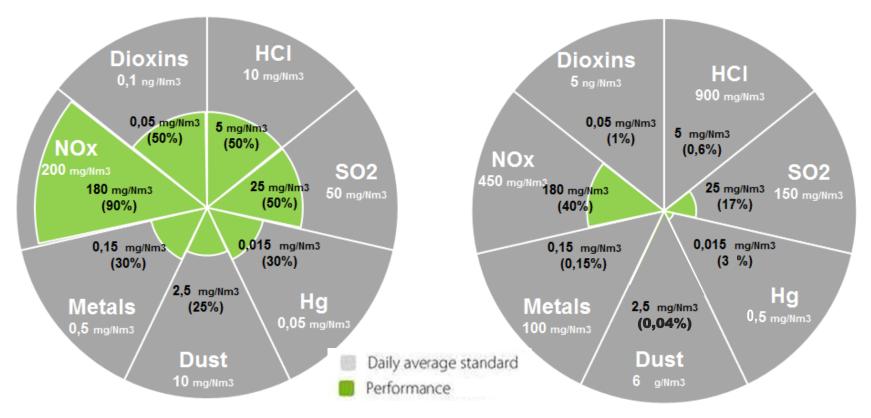
Typical Pollutants to treat after combustion such as Municipal Solid Waste (MSW)

ENIM

Daily Emission Limit Values (ELVs) to air according to IED 2010/75/EU

Industrial Emission Directive of 24/11/2010 for different industrial activities using solid fuels

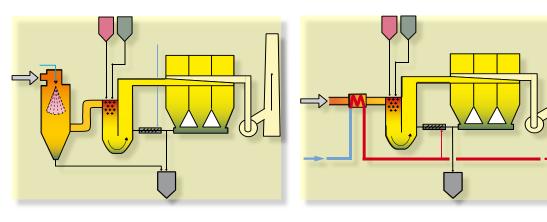
SUBSTANCES/ ACTIVITIES		/Nm ³ (dioxins & s in ng/Nm3)	Thermal Input (MW _{th})	Dust	тос	со	нсі	HF	SO₂	NOx	Dioxins and furans	Cd + TI	Hg	Heavy Metals (Sb+As+Pb+Cr +Co+Cu+Mn+Ni +V)
Waste incineration & Co-incineration	at 11% O ₂ dry	New & Existing > 3 t/h	~ 7	10	10	50	10	1	50	200 (expressed in NO2)	9.1	0.05	0.05	0.5
Combustion Plants (coal , lignite and other solid residues)	at 6% 0 2 dry ^{ur} (converted 2	New & Existing	< 50	-	-	-		-	-		ne	211	-	-
		Existing (started operation	50-100	30 (20)	-		ies	st	400 267	130 (20 1450 (300) pulverized lignite]	P.	-	-	-
		until 7/01/2014)	20-300	2. (17)	ΗĒ				250 (167) 200 (133)	200 (133)	tin	n	-	-
		Etw							Jeg	400 (267)		-	-	-
		•	100-300	211	nte			-	2 <u>09 (133)</u>	200 (133)	-	-	-	-
		Envi	1 30	10 (7)	-		-	-	150 (100) [200 (133) Ifluidized bed]	150 (100) [200 (133) pulverized lignite]	-	-	-	-
Combustion plants (biomass)	at 6% O ₂ dry	Existing	50-100	30 (20)	-	-	-	-	200 (133)	300 (200)	-	-	-	-
		(started operation until 7/01/2014)	100-300	20 (13)	-	-	-	-	200 (133)	250 (167)	-	-	-	-
			> 300	20 (13)	-	-	-	-	200 (133)	200 (133)	-	-	-	-
		New	50-100	20 (13)	-	-	-	-	200 (133)	250 (167)	-	-	-	-
			100-300	20 (13)	-	-	-	-	200 (133)	200 (133)	-	-	-	-
			> 300	20 (13)	-	-	-	-	150 (100)	150 <mark>(100)</mark>	-	-	-	-


- □ Incineration: 20 components and lower ELVs (most stringent EU environmental Legislation)
- **Combustion Plants > 50 MWth.** Higher ELVs and for 3 pollutants only
- Combustion Plants < 50 MWth: no emissions limits</p>

Typical Abatement Performance of Pollutants in EfW

Typical Measured Values at <u>Stack</u> over <u>ELVs EU Directive 2010/75/EC</u>

Typical Measured Values at <u>Stack</u> over <u>FGT Inlet</u>



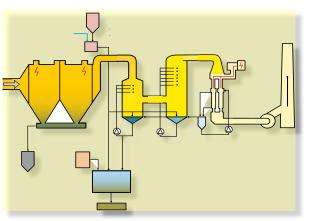
Measured values << ELVs (Emission Limit Values)

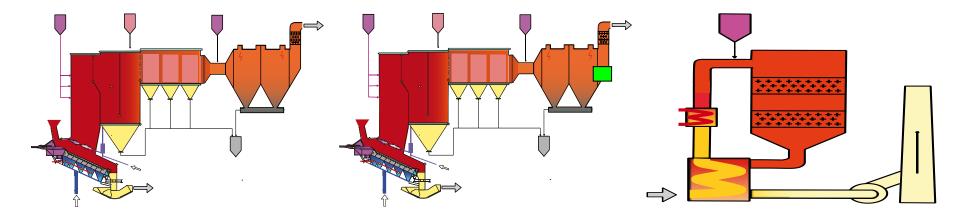
Abatement Technologies for Acid Gases, Heavy metals, POP...

Dry / Semi-dry (Vapolab)

Reactive agents

- Lime
- Sodium Bicarbonate
- Calcium carbonate
- Soda
- Activated carbon, lignite coke

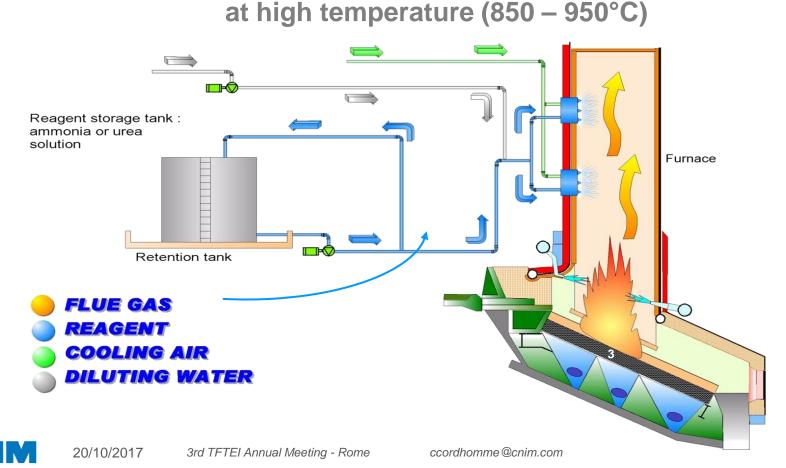

20/10/2017


Semi-wet

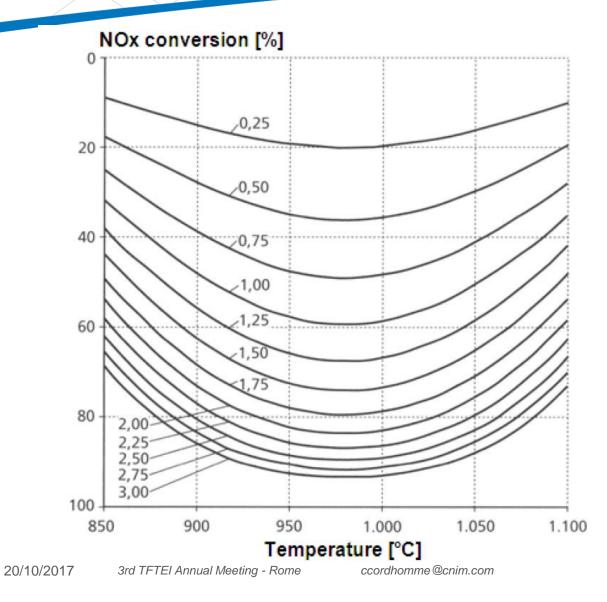
Wet

Abatement Technologies for deNOx (Secondary measures)

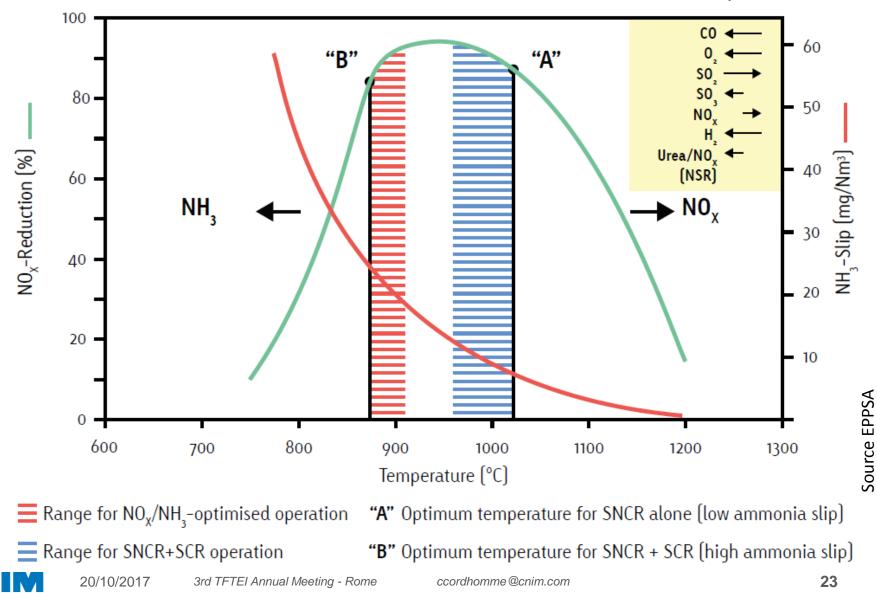
SNCR (non catalytic)


950 – 1050 °C

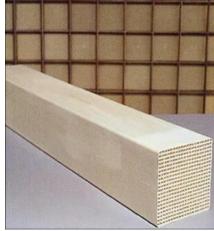
SNCR + SCR Terminox[®] 200 – 280 °C SCR (catalytic) CataLAB[®] 180 – 250 °C



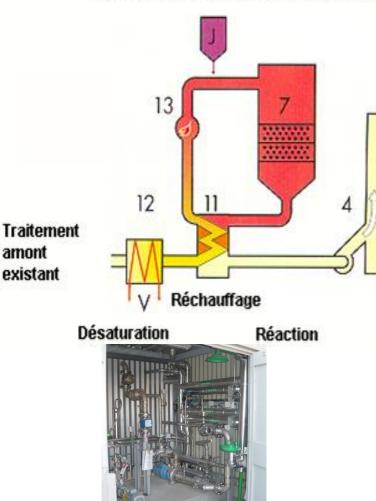
Reagent injection in the combustion chamber



SNCR NOx conversion vs temperature & stoichiometry


SNCR efficiency and ammonia slip

Influence on Temperature Window



Abatement Technologies SCR de-NOx (Selective Catalytic Reduction)

Injection d'ammoniaque pour la DeNOx

Different types of SCR deNOx (and dediox)

 Low dust SCR
 Tail end SCR
 Cold SCR

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

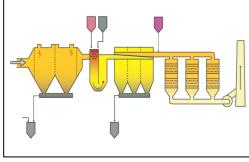
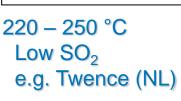

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Image: Cold scr
 Image: Cold scr
 Image: Cold scr


 Image: Cold scr
 Image: Cold scr
 Image: Cold scr

 Im

Cold SCR with regeneration

260-280 °C High SO_2 e.g. lvry (F)

180 - 200 °CVery low SO₂ e.g. Aarhus(DK)

 $180 - 200^{\circ}C$ low SO₂ e.g. Torino (It)

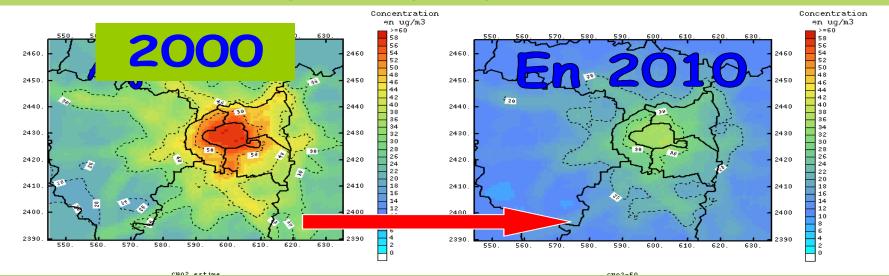
BREF BAT main processes for NOx treatment

Process	SNCR	Combined SNCR +SCR	SCR – Low Dust	SCR –tail end	SCR –cold
NOx reduction	+	++	++	++	++
NH3 slip	0	+	+	+	+
Dioxins reduction	No	No	Dioxin CAT	Dioxin CAT	Dioxin CAT
Water/ Air compressed	+	+	+	+	+
• Dust	N.A.	ESP upstream	ESP upstream	BHF upstream	BHF upstream
 Reactive agents Consumption 	+	++	++	++	++

Overall INTEGRATED optimisation

checking inter-process compatibility and interaction considering the technical and economical local situation.

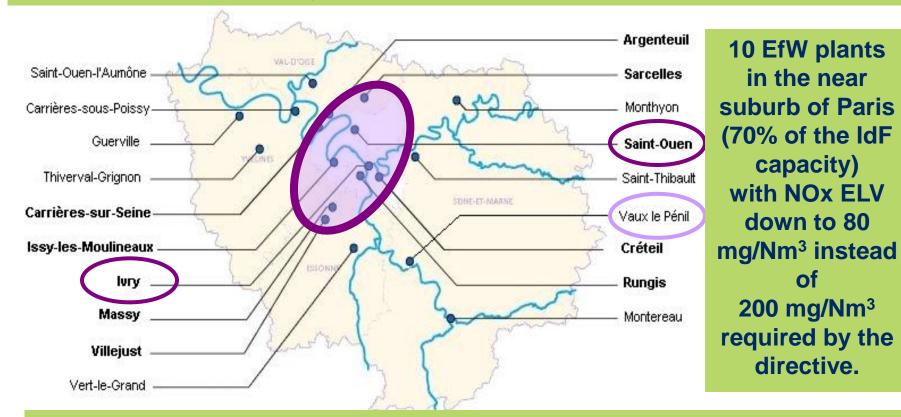
ccordhomme@cnim.com


BREF BAT main processes for NOx treatment

Process	SNCR	Combined SNCR+SCR	SCR –Low Dust	SCR –tail end	SCR –cold	
Costs						
• OPEX	+	++	++	++	+	
• CAPEX	+++	+	+	0	+	
Footprint	++	+	+	0	0	
Catalyst life time	NA	+	+	++	+	
Maintenance	++	+	+	0	0	
Other equipment	-	Upstr. ESP Downstr. Eco	Upstr. ESP Downstr. Eco	Gas/gas HEX or steam	Catalyst regeneration	

ENIM Plan of Protection of the Atmosphere (PPA) in Paris Area

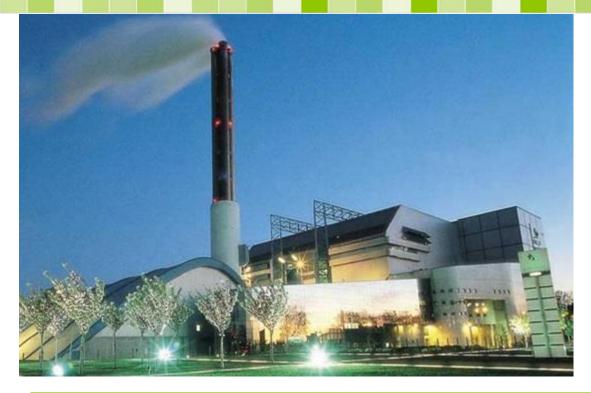
- Average ambient air quality objective of 40µg/m3 of NOx in Paris Region for 2010 (11 millions of inhabitants on 12.000km²).
 - Main source of NOx pollution (>50%) : dense traffic.



Requires a reduction of 40% of the total emissions of NOx compared to the situation in 2000

EfW plants and PPA in Paris Area

19 EfW plants in Ile-de-France (IdF) - 4 millions of tons of MSW treated (1/3 of the national capacity) - Around 4% of the NOx emission in IdF in 2000.

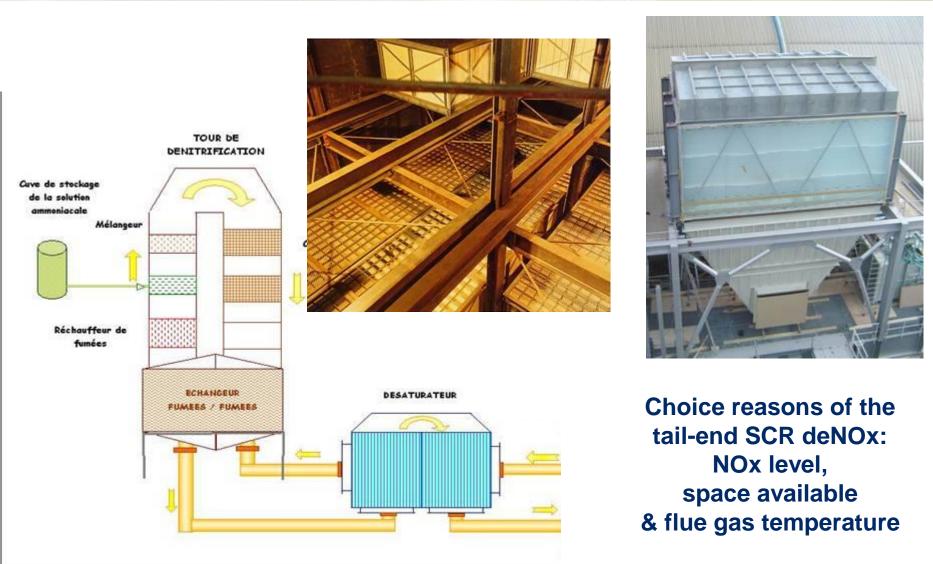

Reduction of the NOx contribution of EfW in Ile-de-France from 4% in 2000 to around 1%, instead of 2% obtained with the directive limit of 200mg/Nm³

3rd TFTEI Annual Meeting - Rome

ccordhomme@cnim.com

Retrofit of the wet flue gas treatment of SYCTOM of PARIS – Saint-Ouen plant (France) 630.000t_{MSW}/y

- 3 combustion lines capacity 28t MSW/h started in 1990 with grate furnace and steam boiler for cogeneration
- Existing wet flue gas treatment with liquid effluent discharge including electrostatic precipitator, quench and 1 wet scrubber started in 1990. Was in conformity with European directive 1989


SYCTOM PARIS Saint-Ouen - Process

Main pollutants to treat : Dust and SOx (a few), dioxins and NOx 80mg/Nm³ (PPA)

	Treat Selective	alytic ment Catalytic iction	Non Catalytic Treatment On Wet Process On Dry Process				
	Tail-end SCR	Low dust SCR	LAB scrubber without active carbon slurry	Downstream Bag-House	deNOx Bag-House		
Solution	Α	В	С				
Performances Dioxins	++	+	0				
Performances Mercury	0	0	+				
Performances Dust and SOx	0	0	+				
Performances NOx	++	++	0				
Energy Consumption	++	+	0				

CNIM SYCTOM PARIS Saint-Ouen - Installed equipment

Retrofit of the wet flue gas treatment of SYCTOM of PARIS XIII – IVRY plant (France) 730.000t_{MSW}/y

 2 combustion lines, started in 1969 : 50t MSW/h /line (WORLD RECORD SINCE ALMOST 48 YEARS), with grate furnace and steam boiler for cogeneration

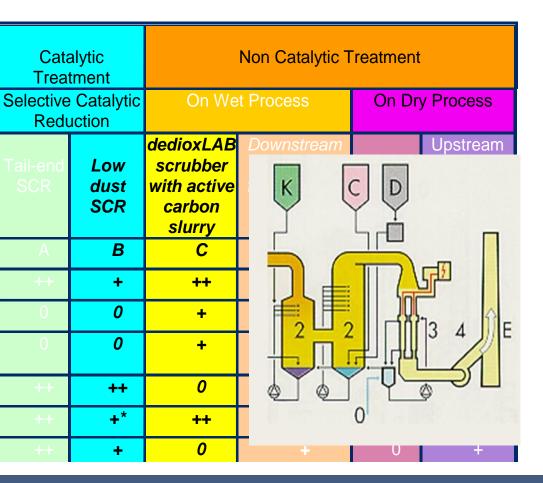
 Existing wet flue gas treatment started in 1995 with liquid effluent discharge including electrostatic precipitator, quench and wet scrubber. Was in conformity with European directive 1989

ENIM SYCTOM PARIS XIII - Process

Main pollutants to treat : Dust (with an aditionnal ESP), dioxins and NOx 80mg/Nm³ (PPA)

Solution

Performances Dioxins


Performances Mercury

Performances Dust and

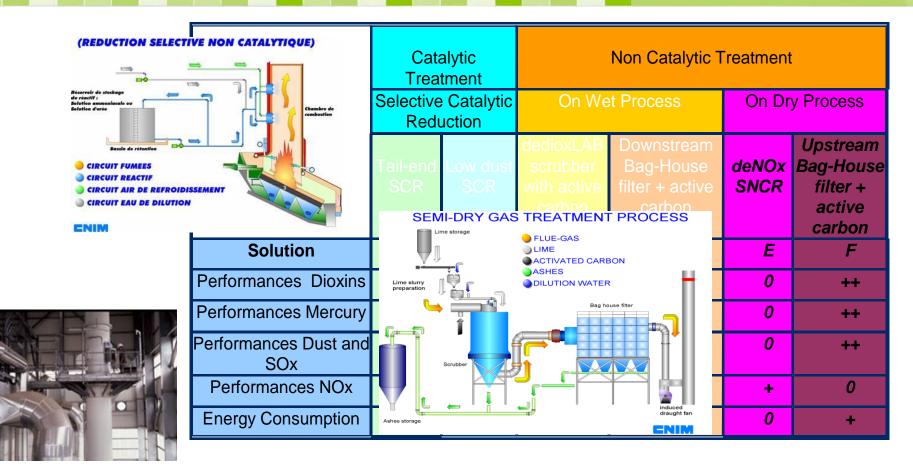
SOx Performances NOx

Memory Effect Treat.t*

Energy Consumption

3rd TFTEI Annual Meeting - Rome

ccordhomme@cnim.com



Flue gas treatment of SMITOM VAUX LE PENIL-MELUN new plant (FRANCE) 130.000t_{MSW}/y

- 2 new combustion lines : capacity 8t MSW/h each started in 2003 with grate furnace and energy recovery boilers, producing each HP steam for electricity production (10MWe exported).
- 2 flue gas treatment lines based on semi-wet process, including an injection of atomised lime milk and active carbon in a reactor and a dedusting with a bag house filter. NOx treated with SNCR deNOx, consisting in an injection of ammonia-water in the furnace.
- In conformity with European directive 2010 but not concerned by the PPA requirement

CNIM SMITOM VAUX LE PENIL - Process

Choice reasons:

NOx level, integrated process giving optimum ratio for investment/operation costs

3rd TFTEI Annual Meeting - Rome

ccordhomme@cnim.com

ENIM For each situation, a BAT solution

3rd TFTEI Annual Meeting - Rome

ccordhomme@cnim.com

lab

Some recent Dry/Semi-dry + SNCR FGT

- Gloucester Urbaser (2019)
- South London Viridor (2018)
- Leeds Veolia (2016)
- Wilton Suez (2016)
- Shropshire Veolia (2015)
- Cardiff Viridor (2015)
- Suffolk Suez (2014)
- Plymouth MVV (2014)
- Oxford Viridor (2014)
- Stafford Veolia (2014)
- Lincoln WRG FCC (2013)
- Jersey Government (2011)

-

Some recent deSOx Marine scrubbers

3rd TFTEI Annual Meeting - Rome

Some recent FGD for Power Plants

- SECOLAB with conditioning tower

- SOLVAY Dombasle (2013): 2x78 MWth
- DALKIA Trebovice (2015): 1x160 MW
- SOLVAY Tavaux (2016): 1x134 MWth

- <u>Sea water scrubber</u>

LOKALSTYRE Longyearbyen (Spitzberg) - 2015

3rd TFTEI Annual Meeting - Rome

ccordhomme@cnim.com

Limestone / Lime scrubbing system

- ALBIOMA Le Moule (2012): 1 x 38 MWel
- **CEH Paroseni (2015): 1 x 150 MWel**
- ALBIOMA Le Gol (2016): 1 x 58 MWel

Some recent projects for Biomass boilers

- Biomass AVA Lisbjerg (DK)

- 1 line 110 MWth (137'000 Nm3/h)
- Straw fire boiler
- Dry system + SCR deNOx + flue gas condensation combined to combustion air humidification

- Biomass Vattenfall Fynsvaerket Odense (DK)

- Existing Straw fire boiler 117 MWth equipped with SCR unit between BHF and condensation Levy 3.35€/kg NOx
- NOx guarantee : 15 mg/Nm³ with NH₃ slip lower than 2 mg/Nm³

COPENHAGEN (DK) by 2025: 1st CO₂-neutral capital & 100% renewable and recovery heat in District Heating! (98% of city's demand!)

Copenhill d/

250MWth Waste to Energy with flue gas condensation & absorption heat pumps BIO4 "Plant power" 500 MWth Wood Boiler with flue gas condensation **OD** guarantees Flue Gas emissions compliant to the most stringent standards of the European Best Available Techniques

Kara Noveren, Denmark

20/10/2017

ccordhomme@cnim.com