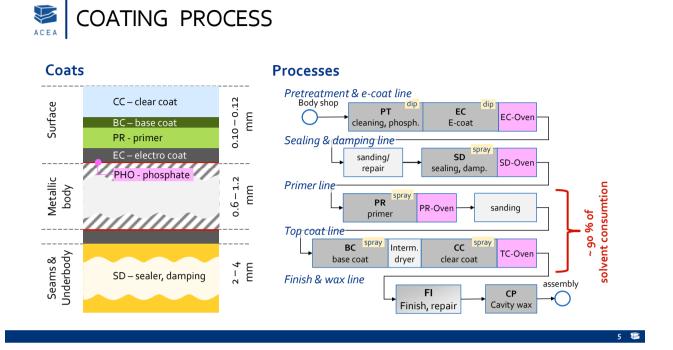


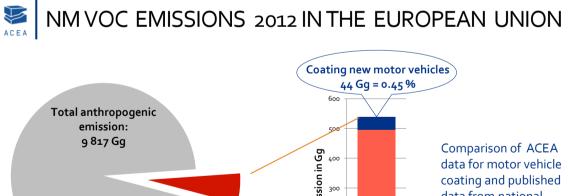
Vehicle coating Solvent use and BAT in motor vehicle paint shops

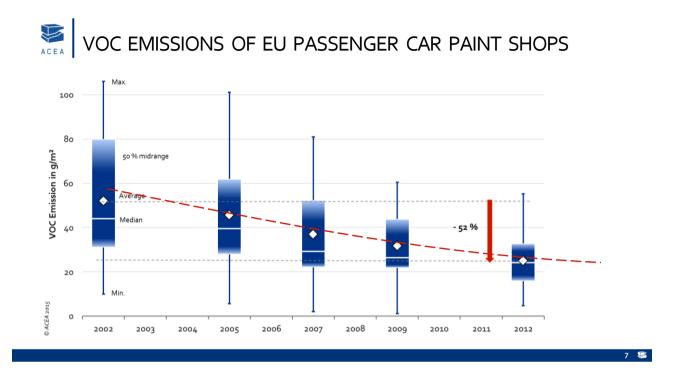
TFTEI ANNUAL MEETING 2016 CATANIA (ITALY) 20/05/2016

Michael Mrowietz, Roman Meininghaus ACEA

Saturday, 28 May 2016


- Environmental relevance of vehicle paint shops
- What has been done in the last 10 years
- Rounded off by a 5 min crash course in vehicle painting





MMVOC emission in Gg data from national 3 A 2 emissions inventories 200 Industrial Coating show, that 539 Gg = 5,8 % less than 0.5 % 100 of NMVOC emissions are caused by vehicle o 1 Gg = 1000 tons 2012 coating. http://www.ceip.at/ms/ceip_home1/ceip_home/webdab_emepdatabase/

6 🌚

Determination of total emissions mass flow E_{mass} in kg/a:

 \mathbf{E}_{mass}

direct method: measurements at all fugitive and point sources

O1 + Fugitive

expensive, complex, inaccurate

- VOC destroyed or transfered in waste $= C - O_5 - O_6$

Consumption of solvents

indirect method

moderate costs, use of available data, reliable. Generally applied in the automobile industry

Determination of electro-coat surface A_{EC} in m²/a

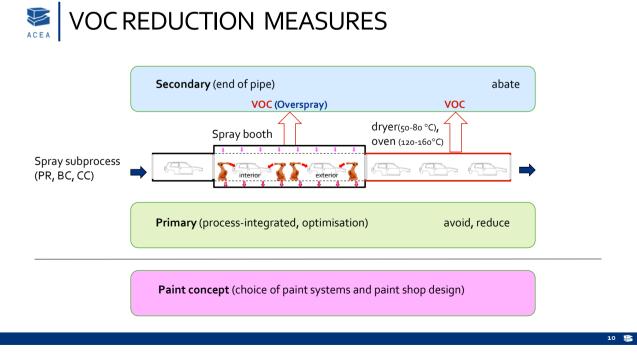
 $A_{EC, veh} \times n_{veh} = A_{EC}$

A_{FC} surface is a reference surface (not the painted surface)

Calculation of total emissions in g/m²

 $E = E_{mass} / A_{EC}$

4


8 🔛

FACTORS THAT INFLUENCE SOLVENT CONSUMPTION AND VOC EMISSIONS

Product requirements

Painted surface, custom requirements on appearance and fashion (special effect colours, 2tone), availability of water based paints (fleet colours)

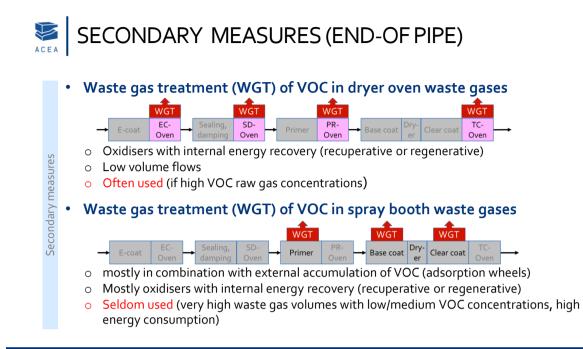
- Paint shop design, application techniques and abatement measures Consumption of solvents and emissions of VOC depend on the
 - o application of many different techniques,
 - o which might be different in each process step or paint shop line
 - o and cannot be combined arbitrarily

9 🐷

Primary measures

PRIMARY MEASURES (PROCESS - INTEGRATED)

High first run rate
 Clean room spray cabins
 Air-locks with body dusting
High paint transfer efficiency
 Automation
 Rotary atomisers (bells) with electrostatic charging
 Low loss colour changers and cleaning techniques
$\circ~$ Capturing of cleaning solvents / paint at colour changes
• Reduction of VOC content in coatings and solvents/cleaners
 High solid paints
 Replacements of solvent cleaners by detergents


Primary measures

PRIMARY MEASURES (PROCESS-INTEGRATED)

- Driving forces: product quality, cost per unit
- Environmental benefit without or with acceptable additional cost
- Achieved VOC reduction in the last 10 years: (10 ± 5) g/m², depending on local conditions
- Can be retrofitted in existing paint shops, but limitations of applicability must be taken into account
- Standard for new installations

12

11 🖾


- Driving forces: environmental protection
- Additional invest and running cost

Secondary measures

- Achievable VOC reduction depends on raw gas mass flow
- Cross media effect: energy consumption, NOx and CO emissions
- Dryer oven waste gas treatment standard in new paint shops (exceptions for low raw gas mass flows)

14 🐷

13 🔛

- In a paint shop usually 3 4 paint layers are applied in successive steps •
- Depending on solvent composition three paint shop families have been evolved in the last 30 years

Family	% EU	Primer		Base coat	Clear coat	
SB	15	SB	Oven (opt.*)	SB	Generally SB (not applied for unicoats)	
SB-Mix	29	WB		SB		Oven
SD-IVITX		SB		WB		
WB	56	WB		WB		

= Solvent based (35 - 89 % VOC) SB

WB = Water based (5 - 17 % VOC)

= not for integrated processes (IP), IP is an umbrella term for several new paint processes introduced since ~2000 and actually used in ~18 % of all paint shops

Paint concepts

Paint concepts

*)

SUBSTITUTION IS A FUNDAMENTAL CHANGE

		Solvent based	Water based	
	Spray coating system:	Solvent based	Water based (except clear coat)	
	Intermediate dryer between base coat and clear coat	Short flash-off zone (not in all cases)	Intermediate dryer (with T = $50 - 80$ °C, t = $5 - 10$ min) and in/out air-locks necessary, typical length: $35 - 55$ m (+ 75 % of total length of a top coat line).	Longer line
	Primer dryer oven heating curve	No temperature hold below 100 °C	5 – 10 min. temperature hold necessary to evaporate water before surpassing the boiling point temperature.	Longer line
	Construction material for paint booths	Standard galvanised steel	Stainless steel for all parts in contact with paint	Full renovation
	Use of electrically charged bells	Automatic application	Automatic application. Electrically disjoined paint supply system necessary	Less efficient
	Paint window	Broader than for water based paints	Restrictions in range of humidity. Depending on local climate conditions additional equipment for air conditioning	Larger air handling units

16

15 🐷

- The choice of the coating system entails fundamental and mostly • irreversible differences in the design of the paint shop.
- In existing sites such a fundamental change can be done only if
 - o there is room to build a second paint shop (or paint shop line) in parallel without interrupting the existing one,
 - o and where the new paint shop can be linked to the body and to the assembly shop.
 - o if production can be interrupted for a longer time (> 4 weeks), which is normally not the case in the vehicle industry.
- · Each production line is normally dedicated to only one single model of the product range of a company.
- Due to these constraints such a transformation is very expensive and is rarely made.
- A decision for a certain paint concept is usually made for new paint shops.

Paint concepts

EVALUATION OF VOC REDUCTION MEASURES

Measure	Implementation time	Costs	Potential tradeoffs
Primary	Short - long	High investlong pay back	Quality / Appearance lossRun up difficulties
Secondary	Short	 High invest high operational cost no payback 	 More energy use more CO₂ emissions additional emissions of dust, NO_x, CO
Paint concept	Long (new or major refurbishment)	Can reduce operational costs	 Quality loss Appearance loss Run up difficulties Longer interruption not acceptable Production losses Site layout constraints

17 😼

- VOC emissions have been halved in the last 10 years.
- The contribution of motor vehicle paint shop emissions to anthropogenic NMVOC emissions in the EU has been reduced to below 0.5 %.
- This has been achieved by a combination of
 - Primary measures (process optimisation),
 - Secondary measures (waste gas treatment),
 - Introduction of paint concepts with low VOC paints (mainly in the context of startup of new plants).
- The applicability of each measure has to be evaluated case by case.
- Achievable emission reductions are different for existing and new installations
- Further reduction of VOC emissions will be slow and very expensive.

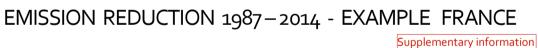
19 🞏

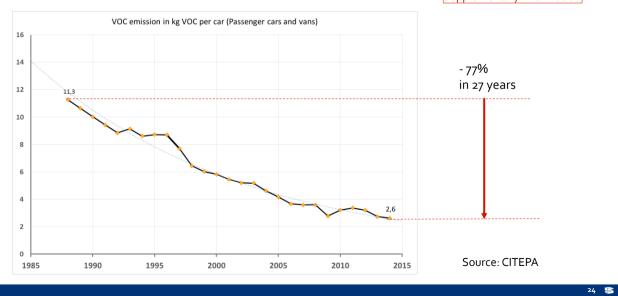
Supplementary information

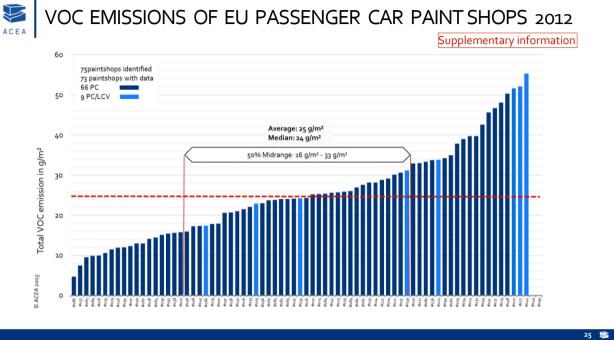
Typical line: 30 u/h, $85 000 \text{ m}^2$ floor, line lengh 1.5 km; processing time 6 - 11 h:

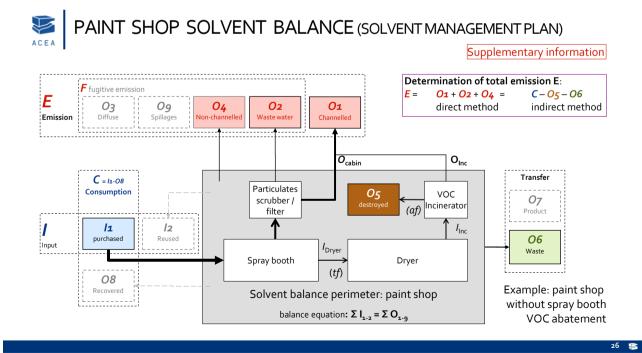
22

Supplementary information


23 🞏


Ressource consumption
Solvents / Paints
Energy


Water


Releases into air VOC volatile organic compounds PM particulate matter NOx, CO Nitrogen oxides, Carbon monoxide CO2 Carbon dioxide **Releases into water** Chemical oxigen demand COD (Heavy) metals, Ni, Zn Metals Waste Paint sludge / paint filter dust Solvent Phosphate sludge

Primary measures

PROCESS OPTIMISATION, SHOP FLOOR MANAGEMENT

Supplementary information

High first run rate

Dusting

Airlocks at spray cabins with dusting equipment for bodies: ionised air blow-off stations rotating feathers robot-operated suction brushes

Clean room conditions

- Particle filters in spray cabin AHU .
- **Special work-clothes**
- Airlocks for operators and maintenance personnel

TRANSFER EFFICIENCY

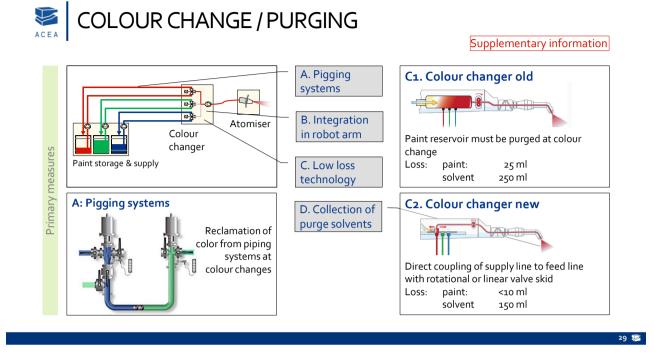
Manual application Only with air-spray Exterior until 2000 Hard to reach areas Special cases Primary measures **Paint machines** Air-spray or bells Many spray-heads Exterior: 1980 - 2000 Interior: not applicable Robots Mainly bell atomisation Exterior: 2000 - 2005 Interior: 2010 - ongoing

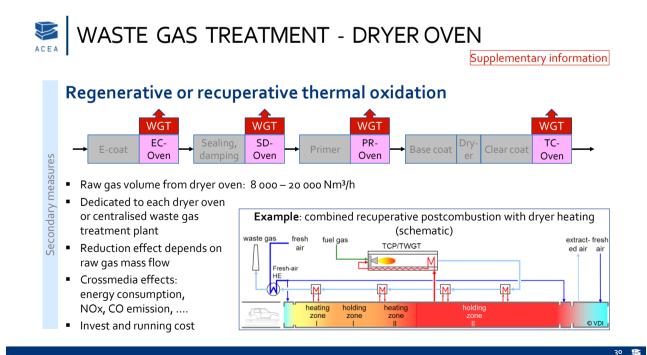
Supplementary information

Airspray (HVLP) Automatic & manual

Exterior: until 2000 Interior: until 2012 Still applied in special cases Transfer efficiency: 25 – 45 %

Rotary atomiser (Bell)


Only automatic With internal or external electrostatic charging Exterior since 2000 Interior: since 2012, ongoing Transfer efficiency: 50 – 85 %



28 🍃

27 🔛

