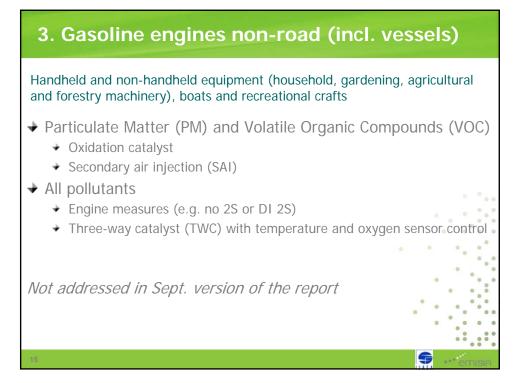
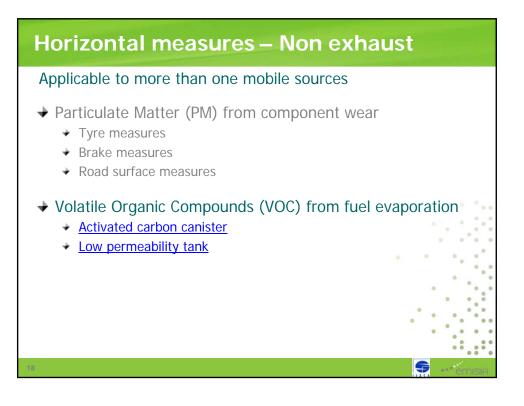


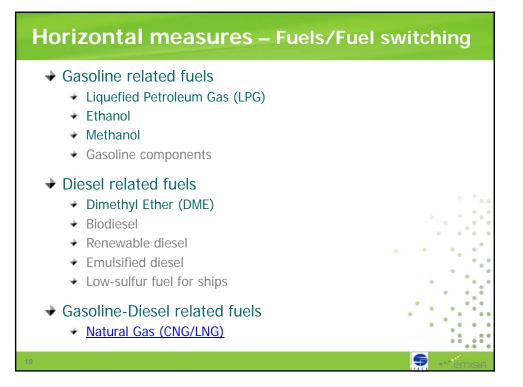

Technical description of BAT candidates

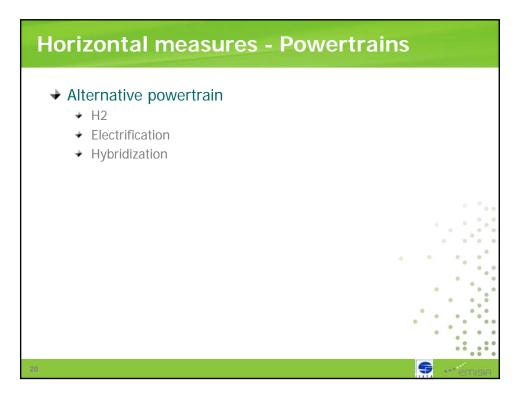

- A common template has been used for all techniques. Focus on:
 - Pollutants addressed, type of application, short description
 - Environmental benefit (% reduction), costs (implementation, operation)
 - Side-effects (fuel consumption, nonregulated pollutants, trade-offs)
 - ✤ Limitations in applicability
 - Implementation issues
 - Maintenance requirements
 - ✤ Others, durability, safety, etc.
 - Successful examples, references
- Questionnaire sent out to ~30 industrial associations and individual industries
 - ✤ 14 provided feedback

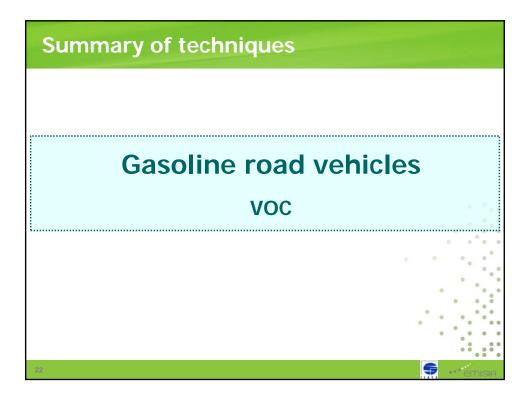
isues
• • • • •
•

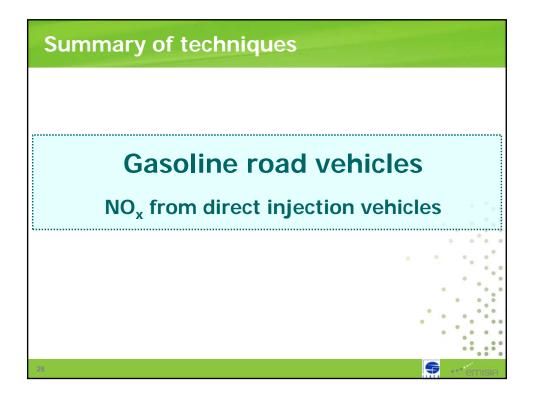
General Description		Limitations and Impler	nentation Issues
Name of technique Poliutants addressed Engine/vehicle/vessel types considered	Diesel Particulate Filter (DPF) Main/n; PM, PN, BC, Synergies: HC, CO Diesel engines and vehicles (new or retrofit applications): light- and heavy-duty vehicles, non-road machinery, trains. • DPF remove particulate matter in diesel exhaust by filtering exhaust from the engine. Since a filter can fill up over time, a means of burning off or removing accumulated particulate matter must be provided. A convenient means of disposing of accumulated particulate matter is to burn or oxidize it on the filter when exhaust temperatures are adequate. By burning off trapped material, the filter is cleaned or "regenerated". Devel Parkshut The Timent PN -	Limitations in its applicability (e.g. environmental conditions, fuel specifications, technological barriers, behavioral changes, etc.)	The system should be properly designed for the particular application to be used. Ideally suited for new vehicles. Exhaust gas temperature data logging must be performed to determine if exhaust temperature meets specific requirements. Ultra-low-subhur dised (ULS) four lequired (CSOppm). Minimum oxygen requirementin exhaust gas: 15% Op. Passive filters require operating temperatures thigh enough to initiate combustion of collected soch. Active regeneration uses other heats sources, such as four bluvning or electric heaters. gB2Es (partial or flow-through filters) are always subject to minimum temperature requirement necessary for periodic regeneration (i.e., combustion of collected MM).
Short description of technique	PM CO RCA PARA PARA PARA PARA PARA PARA PARA	Ease of implementation Maintenance and operation requirements, monitoring, etc.	Trained personnel required for the modification, approved components need to be used. Active/passive regeneration and cleaning system needed (filter: require periodic maintenance to clean out non-combustible materials, such as ash). Since the continuous flow of soot into the filter would eventually block it, it is necessary to "regenerate" the filter by periodically burning off the collected particulate. DPF should incorporate electronic back pressure monitoring
Environmental Benefit	and Costs		equipment to signal vehicle and equipment operators when the device needs to be cleaned.
Specific claims (% reduction range of pollutants addressed)	Reference technology: Turbocharged compression-ignition Durability/lifetime of No significant performance degradation if properly mainta e of • Willingun Des: But (no.nost) ur (so.nost) Co.nost) emission control Possible failures of retrofitted components with time due		No significant performance degradation if properly maintained. Possible failures of retrofitted components with time due to melting/cracking. Monitoring required.
Costs for implementation and	_For heavy duty and non-road vehicles (installation): • Wall-flow DPF: €3,000–€5,000 (the cost can be even higher e.g. for a large piece of non-road equipment).	Impacts on safety (users, citizens,) References and Other	Devices need to be maintained by trained personnel to limit exposure to pollutants.
operation	Plus €200-€700 additional fuel/maintenance costs per year.	nerer ences and other	DPF can be combined with Selective Catalytic Reduction (SCR)
Environmental Side Effe	ects		system or Lean-NOx Catalyst (LNC) technologies for additional
Impact on fuel consumption	Slight fuel economy penalty (1-2%).	Comments or remarks not addressed above ot addressed above	
Non-regulated pollutants and trade- offs	Catalyzed DPFs may increase the NO ₂ fraction of total NO _x emissions, as a means to help filter regeneration at lower temperatures		of an EGR (exhaust gas recirculation) system to ensure that large amounts of particulate matter are not recirculated to th engine.



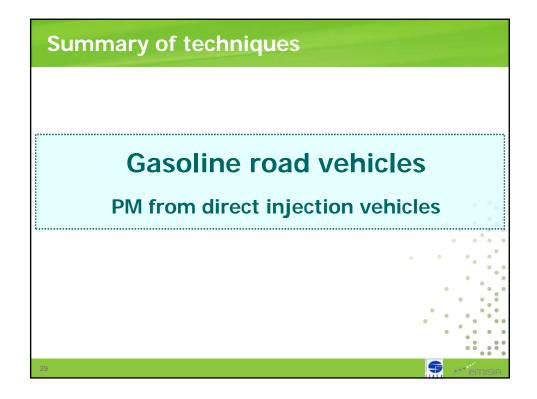




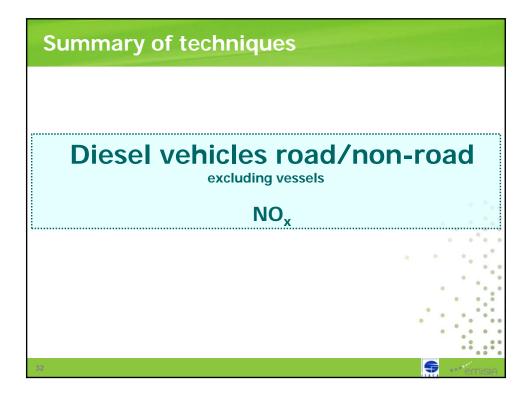




Two-way	oxidation catalyst Back
Main application (engine, vehicle)	•All gasoline vehicles: PCs, LCVs, mopeds/motorcycles •Mainly used in the past, now superseded by TWC
Pollutants addressed	•Ref. tech: SI gasoline engine without aftertreatment •VOC (60-95%), CO (70-95%), NMVOC (40-90%)
Cost	€150-300 (as a replacement part) for PCs, even lower for smaller vehicles
Environmental side effects and synergies	CH ₂ O (60-95%), HAPs (60-95%)
	No significant impact on fuel consumption
Limitations in applicability, implementation and other issues	No positive effect on NO_x (superseded by TWC)
	Pre-warming necessary to reach optimum temperature (SAI improves light-off performance during cold start)
	Effectiveness degradation over time, vibration, shock, heat, lack of vehicle maintenance can cause failures
23	📻 - emisie


Secondar	y air injection (SAI) Back
Main application (engine, vehicle)	 Mainly for power two wheelers: mopeds/motorcycles Improves effectiveness of two-way oxidation catalyst
Pollutants addressed	•Ref. tech: P2W with 2-way oxidation catalyst •VOC, CO (75-85% from 50% without SAI)
Cost	€80-150 (as a replacement part)
Environmental side effects and synergies	Reduction of white smoke
	No significant impact on fuel consumption
Limitations in	No specific limitations in applicability
applicability, implementation	Easy to install
and other issues	No specific maintenance requirements
24	S emisia

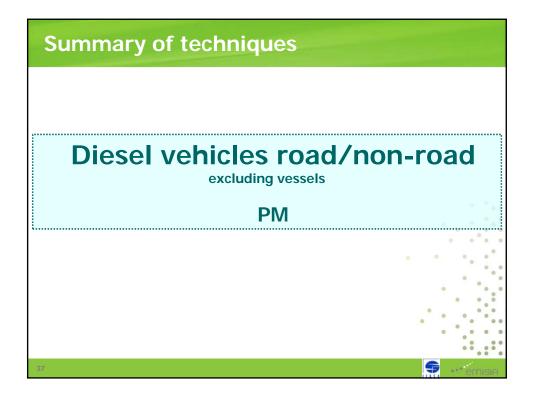
Three-wa	y catalyst (TWC) Back
Main application (engine, vehicle)	•All gasoline vehicles: PCs, LCVs, mopeds/motorcycles •Primary emission control technology since early 1980s
Pollutants addressed	•Ref. tech: SI gasoline engine without aftertreatment •NO _x (90-95%), VOC (60-95%), CO (90-95%)
Cost	€600-1,200 (as a replacement part), for PCs/LCVs
Environmental side effects and synergies	• Reduction of CH_2O (80-95%), HAPs (80-95%) • Formation of H_2S , NH_3 may occur
	No significant impact on fuel consumption
Limitations in applicability, implementation and other issues	 Efficiency falls rapidly when engine not operated within a narrow band of air-fuel ratios near stoichiometry Pre-warming necessary to reach optimum temperature (electrically heated, close-coupled catalysts) Effectiveness degradation over time, vibration, shock, heat, lack of vehicle maintenance can cause failures, Pb and other metals poison the catalyst
25	🝧 emisia


Stoich. co	ombustion for GDI vehicles
Main application (engine, vehicle)	•GDI (gasoline direct injection) vehicles: PCs, LCVs •Combined with TWC
Pollutants addressed	•Ref. tech: GDI lean-burn engine •NO _x (70-85%)
Cost	€85-290 (manufacturer cost)
Environmental side effects and synergies	Positive impact on non-regulated pollutants imposed by use of TWC
	Fuel consumption increase by $\sim 5\%$ (compared to lean)
Limitations in applicability, implementation and other issues	•Can basically be implemented only by the manufacturer •Limitations in applicability and implementation issues imposed by use of TWC
27	🥌 emisia

LNT for G	DI vehicles Back
Main application (engine, vehicle)	•GDI (gasoline direct injection) vehicles: PCs, LCVs •Lean-burn engines
Pollutants addressed	•Ref. tech: GDI lean-burn engine •NO _x (70-85%)
Cost	€800-1,000 (as a replacement part)
Environmental side effects and synergies	Small fuel economy penalty (~2%) because of required brief periods of rich operation to regenerate
	NH_3 is generated during the rich regeneration phase (give up trapped NO_{X})
Limitations in	Low-sulfur fuel required because LNT also adsorbs SO_{x} resulting from the fuel sulfur content
applicability, implementation and other issues	Periodic 'desulfation' cycle required to remove any adsorbed sulfur compounds
	High temperatures required for 'DeSO _x ' regeneration (~700°C) and 15-20' to be completed
28	🤶 emisia

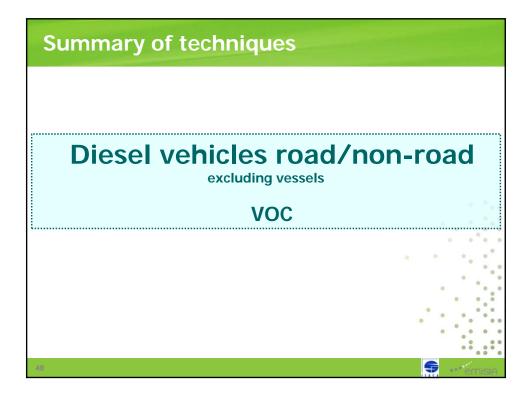
Engine m	easures for GDI vehicles Back
Main application (engine, vehicle)	•GDI (gasoline direct injection) vehicles: PCs, LCVs •Lean combustion mode or stoichiometric mode
Pollutants addressed	High pressure spray-guided multi-injection: less PM, PN, BC emissions (two orders of magnitude) than wall-guided
Cost	• Spray-guided injection more expensive than wall-guided • Fuel savings 2-5%
Environmental side effects and synergies	No significant impact on non-regulated pollutants
	Fuel consumption may improve 2-5% (with corresponding reduction in CO_2 emissions)
Limitations in	Spray-guided injection more difficult to implement than wall-guided (which, although not optimal, is commonly used)
applicability, implementation and other issues	More stringent standards (e.g. Euro 6c GDI PN limits) are likely to compel manufactures move to spray-guided
	Low-sulfur fuel required, no specific maintenance requirements, only implemented by OEM
30	📻 * emisia

Gasoline	Particle Filter (GPF) Back
Main application (engine, vehicle)	•GDI (gasoline direct injection) vehicles: PCs, LCVs •GPFs maybe required by Euro 6c GDI PN limits
Pollutants addressed	•Ref. tech: GDI engine •PM (75-95%), PN, BC
Cost	€800-1,600 (indicative cost)
Environmental side effects and synergies	No significant impact on non-regulated pollutants (any effects should rather be on the positive side)
	Small increase in fuel consumption and CO_2 emissions 1-3% due to increased back pressure and regeneration
Limitations in applicability, implementation and other issues	As in DPFs, regeneration and cleaning system needed to prevent blocking (periodic maintenance to clean out non-combustible materials and accumulated soot)
	Problem not as intense as in DPFs (lower soot mass and higher exhaust temperatures than diesel counterparts)
31	

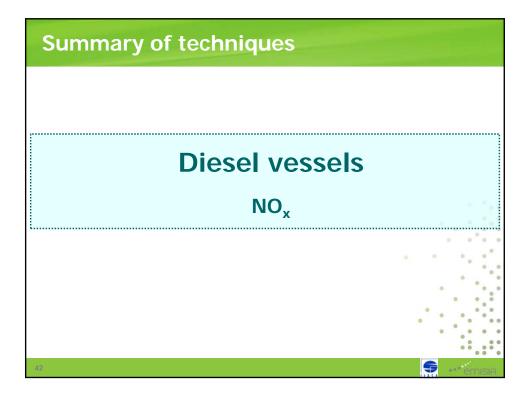


Exhaust (Gas Recirculation (EGR) Back
Main application (engine, vehicle)	Diesel engines/vehicles (new/retrofit): PCs, LCVs, HDTs, buses, NRMM (construction/agriculture), trains
Pollutants addressed	•Ref. tech: T/C CI engine, high-pressure fuel injection \bullet NO _x (25-45%)
Cost	Indicative manufacturer cost: €450-600 (LDVs), €1,400- 1,800 (HDVs), even higher for non-road machinery
Environmental side effects and synergies	Risks by PM recirculation if not combined with a DPF
	Slightly reduces engine power
Limitations in	ULSD (<50ppm) and electronic control strategy required to ensure efficient operation
applicability, implementation and other issues	Limited use as retrofit (major engine integration)
	Exhaust cooling may result in engine wear due to excess water vapor
33	😴 emisia

Selective	Catalytic Reduction (1/2)
Main application (engine, vehicle)	Diesel engines/vehicles (new/retrofit): PCs, LCVs, HDTs, buses, NRMM (construction/agriculture), trains
Pollutants addressed	 Ref. tech: T/C CI engine, high-pressure fuel injection NO_x (70-95%), VOC and CO (50-90%)
Cost	HDV: €7,500 installation (one-off) +€500 urea +€200 maintenance -€800 possible fuel savings (OEM) (p.a.)
Environmental side effects and synergies	 Reduction of PM (20-40%), also reduction of smoke and the characteristic odor produced by a diesel engine 3-5% possible fuel consumption and CO₂ benefits (OEM) Risk for NH₃ slip
Limitations in	 Infrastructure for urea additive must be available Periodic refilling with urea (on-board dosing unit)
applicability, implementation and other issues	 Certain temperature criteria for NO_x reduction to occur Lower efficiency in low-load city driving (low temperatures)
	 SCR units are large, heavy, complex and bulky systems SCR application may not be appropriate for all vehicles
34	📻 * emisie

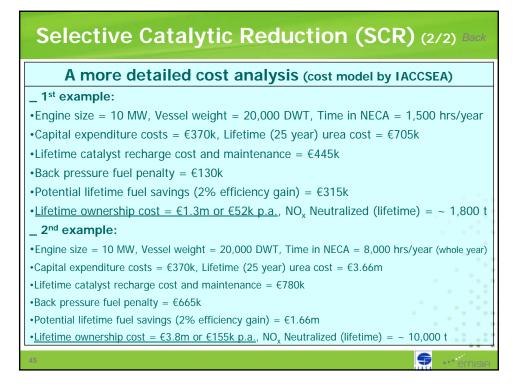

Selective Catalytic Reduction (2/2) Back
A more detailed cost analysis
_ For light duty vehicles:
•Installation: €1,200-1,800 (one-off)
•Possible fuel savings (OEM): €30-130 p.a. (e.g. assuming 2,000 I of fuel p.a., 3% fuel economy because of SCR, and 1.38 €/I diesel price, fuel savings is €83)
•Urea use: \in 30-70 p.a. (e.g. assuming AdBlue [®] consumption 4% of fuel consumption, and 0.6 \in /I AdBlue [®] price, the cost is \in 48)
 Additional maintenance cost: €50 p.a.
_ For heavy duty and non-road vehicles:
 Installation: €5,000-10,000 (one-off) (cost can be even higher for a large piece of NRMM)
 Possible fuel savings (OEM): €500-1,100 p.a. (e.g. assuming 20,000 I of fuel p.a., 3% fuel economy because of SCR, and 1.38 €/I diesel price, fuel savings is €828)
 Urea use: €400-600 p.a. (e.g. assuming AdBlue[®] consumption 4% of fuel consumption, and 0.6 €/I AdBlue[®] price, the cost is €480)
•Additional maintenance cost: €200 p.a.
35

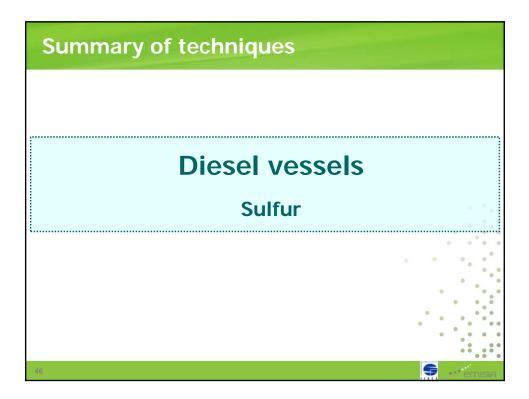
Lean NO _x Trap (LNT) Back		
Main application (engine, vehicle)	• Diesel PCs and LCVs (new/retrofit) • For heavy duty and non-road vehicles, SCR dominates	
Pollutants addressed	•Ref. tech: T/C CI engine, high-pressure fuel injection •NO _x (70-85%)	
Cost	€800-1,000 (as a replacement part)	
Environmental side effects and synergies	Fuel economy penalty (1-2%) because of required brief periods of rich operation to regenerate	
	NH_3 is generated during the rich regeneration phase (give up trapped NO_{x})	
Limitations in applicability, implementation and other issues	ULSD (<10ppm) fuel required because LNT also adsorbs SO_x resulting from the fuel sulfur content	
	Periodic 'desulfation' cycle required to remove any adsorbed sulfur compounds	
	High temperatures required for 'DeSO _x ' regeneration (~700°C) and 15-20' to be completed	
36	S emisie	

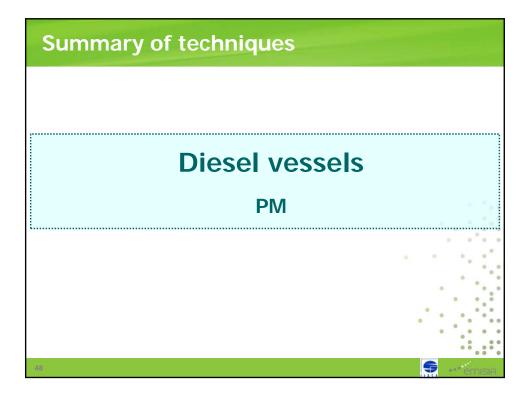


Diesel Oxidation Catalyst (DOC) Back		
Main application (engine, vehicle)	Diesel engines/vehicles (new/retrofit): PCs, LCVs, HDTs, buses, NRMM (construction/agriculture), trains	
Pollutants addressed	•Ref. tech: T/C CI engine, high-pressure fuel injection •PM (20-40%), VOC (40-70%), CO (40-60%)	
Cost	•€500-600 (installation for LDVs) •€1,500-1,700 (installation for HDVs)	
Environmental side effects and synergies	Concerns that DOCs may increase the nitrogen dioxide (NO_2) fraction of total NO_x emissions	
	No significant impact on fuel consumption	
Limitations in	 •ULSD (<50ppm) required, no positive effect on NO_x •Easy to install, little or no maintenance required 	
applicability, implementation and other issues	 Can be coupled with CCV, SCR or lean NO_x catalysts Can also be integrated with DPFs 	
38	📻 - emisia	

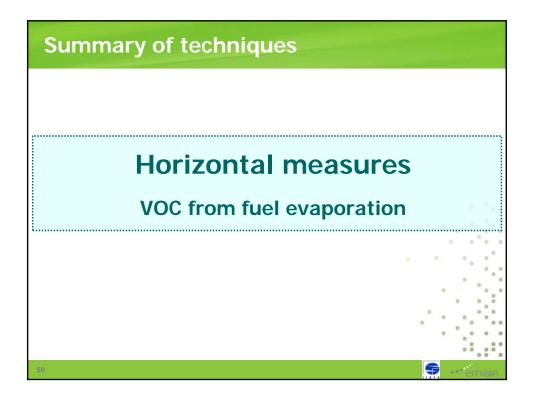
Diesel Particle Filter (DPF) Back	
Main application (engine, vehicle)	Diesel engines/vehicles (new/retrofit): PCs, LCVs, HDTs, buses, NRMM (construction/agriculture), trains
Pollutants addressed	•Ref. tech: T/C CI engine, high-pressure fuel injection •PM (80-95%), VOC (85-95%), CO (50-90%) (wall-flow)
Cost	•€800-1,600 (LDVs) or €3,000-5,000 (HDVs) (one-off installation) •Plus €100-400 or €200-700 (fuel/maintenance cost p.a.)
Environmental side effects and synergies	NO ₂ formation, in particular for catalyzed DPFs
	Fuel economy penalty (1-2%)
Limitations in applicability, implementation and other issues	•ULSD (<50ppm) required, no positive effect on NO_x
	 Regeneration and cleaning system needed (periodic maintenance to clean out non-combustible materials) High temperatures required for regeneration (exhaust gas temperature data logging)
39	🝧 emisia



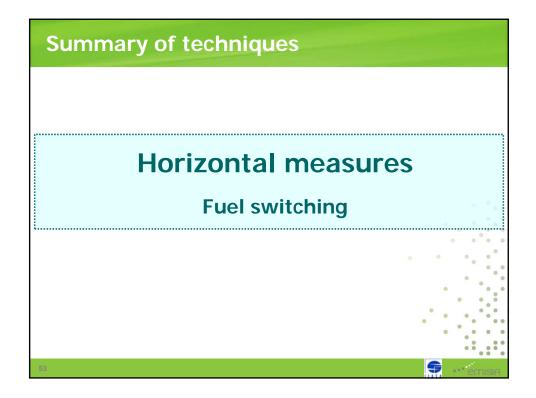

Closed Crankcase Ventilation (CCV)	
Main application (engine, vehicle)	Diesel engines/vehicles (new/retrofit): HDTs, buses, NRMM (construction/agriculture), trains
Pollutants addressed	• Ref. tech: T/C CI engine without crankcase emission control • VOC: ~20% (80-95% reduction of crankcase emissions * 25% contribution to total VOC)
Cost	€250-3000 (retrofit)
Environmental side effects and synergies	CCV eliminates odor and toxins from vehicle interior
	CCV reduces engine oil consumption
Limitations in applicability, implementation and other issues	No limitations in applicability, easy to implement (only filter elements that must be periodically replaced)
	If left open, crankcase from a pre-2007 diesel engine can contribute 25% of total VOC, PM emissions from vehicle
	CCV can be paired with a DOC or DPF
41	🕤 \cdots emisie


Exhaust (Gas Recirculation (EGR) Back
Main application (engine, vehicle)	Diesel ships (mainly new ones, many drawbacks for retrofitting)
Pollutants addressed	 Ref. tech: Conventional CI diesel engine •NO_x (25-80%) -> higher than EGR in HDVs!
Cost	•€0.3M-2M (initial cost for installation) •Operation: SFOC penalty, water treatment and sludge handle
Environmental side effects and synergies	PM and SO_x recirculation if not combined with a DPF or SO_x scrubber
	Slightly reduces engine power Possible fuel penalty 1-2%
Limitations in applicability, implementation and other issues	Not a mature technology for ships, limited use as retrofit (major engine integration required)
	• Electronic control strategy required to ensure operation • Risk of increased maintenance requirements
	Unlike SCR, fuel sulfur content and low load operation are not constraining factors for EGR systems
43	

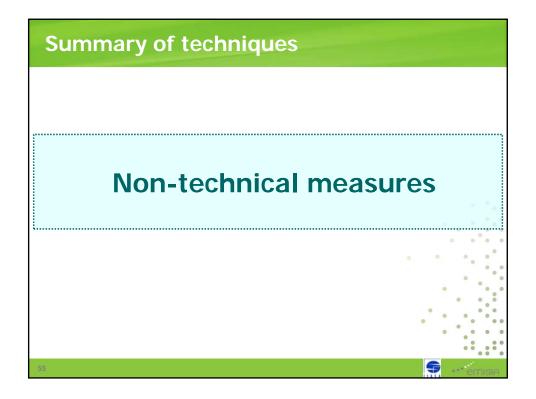
Selective Catalytic Reduction (SCR) (1/2)	
Main application (engine, vehicle)	Diesel ships (new and retrofit)
Pollutants addressed	 Ref. tech: Conventional CI diesel engine NO_x (70-95%), VOC and CO (50-90%)
Cost	€400k-800k capital cost (one-off) (ship size matters!) +€30k-140k urea +€15k-30k maintenance -€5k-40k possible fuel savings (OEM) p.a.
Environmental side effects and synergies	 Reduction of PM (20-40%), also reduction of smoke and the characteristic odor produced by a diesel engine 2-4% possible fuel consumption and CO₂ benefits (OEM) Risk for NH₃ slip, as the catalyst degrades over time
Limitations in applicability, implementation and other issues	 Infrastructure for urea additive must be available Periodic refilling with urea (on-board dosing unit)
	High temperatures for catalytic reaction, efficiency issues in low-loads (<25%) and during slow steaming
	 SCR units are large, heavy, complex and bulky systems Can be combined with DPF or SO_x scrubber
44	📻emisia



Scrubbers Back		
Main application (engine, vehicle)	• Diesel ships (new/retrofit) (main alternative to low sulfur fuel) • Open-loop, closed-loop, hybrid mode	
Pollutants addressed	•Ref. tech: Conventional CI diesel engine •SO _x (65-95%), PM, BC (70-90%)	
Cost	•€0.5М-9М (initial cost for installation) •Operation: ~1.5-2% of added fuel cost (№аон 50%: 200€/t)	
Environmental side effects and synergies	No significant impact on non-regulated pollutants	
	Increase in fuel consumption (0.5-3%)	
Limitations in applicability, implementation and other issues	Documented operational experience of closed-loop scrubbers remains very limited	
	 Space, weight, ship stability constraints when retrofit Can work with high sulfur HFO, in zero discharge mode (scheduled and periodical discharge) Can be used in conjunction with EGR, SCR 	
47	📻 emisia	



DPF for ships Back	
Main application (engine, vehicle)	Diesel ships (new/retrofit), technology under demonstration (cannot be simply transferred from automotive/NRMM)
Pollutants addressed	 Ref. tech: Conventional CI diesel engine PM, PN, BC (45-90%), VOC and CO (60-90%) (wall-flow)
Cost	Still at experimental phase, cannot provide indicative cost ranges
Environmental side effects and synergies	NO ₂ formation, in particular for catalyzed DPFs
	Slight fuel economy penalty (1-2%)
Limitations in applicability, implementation and other issues	Technology not entirely ready for commercial operation (% emission reduction not as high as in automotive/NRMM)
	Severe problem with accumulated soot (ash)
	 Periodic regeneration and cleaning system needed High temperatures required (temperature data logging)
49	🤶 - * emisie



Activated	Carbon Canister Back
Main application (engine, vehicle)	Gasoline vehicles (PCs, LCVs, P2W) and small handheld machinery (lawn, garden) (retrofit or replace smaller canisters)
Pollutants addressed	 Ref. tech: Vehicle/engine with no evaporation control VOC (up to 99% of breathing losses)
Cost	€40-50 (as a replacement part – carbon canister, hoses, purge valve)
Environmental side effects and synergies	No significant impact on fuel consumption and other non-regulated pollutants
Limitations in applicability, implementation and other issues	 Adsorption efficiency may decrease with ethanol content Deterioration of canister performance with mileage
	More complicated retrofit installation, space concerns for small mopeds/machinery
	No effect on other evap. losses (permeation, leakages, refueling), combine with low-permeability tank / hoses
51	🕤 - emisir

Low permeability tank Back		
Main application (engine, vehicle)	Gasoline vehicles (PCs, LCVs, P2W), small handheld machinery (lawn, garden), boat engines	
Pollutants addressed	• Ref. tech: Fluorinated tank with monolayer structure • VOC: ~14% (70% reduction of permeation losses * 20% contribution to total VOC)	
Cost	€200-250 (typical installation cost)	
Environmental side effects and synergies	No significant impact on fuel consumption and other non-regulated pollutants	
Limitations in applicability, implementation and other issues	Metal tanks add weight and limit the shape necessary to meet stringent packaging requirements	
	Permeation and compatibility issues with ethanol blends above 10% for older vehicles	
	No effect on other evaporation (e.g. breathing) losses, combine with activated carbon canister	
52	🥌 emisia	

Natural gas (here CNG for diesel HDVs) Back	
Main application (engine, vehicle)	 Diesel heavy duty road vehicles (trucks, buses) New, retrofit, dual fuel engines (bi-fuel vehicles)
Pollutants addressed	•Ref. tech: T/C CI engine, high-pressure fuel injection •PM (85-95%), NO _x (20-50%), NMVOC (75-85%), CO (70-95%)
Cost	€12k-15k (one-off for conversion to NG) -€500-1,000 fuel cost benefits p.a. (because of lower fuel price)
Environmental side effects and synergies	• Increase of NO_x emissions in some retrofit applications • Not so effective in PN as DPF, increase of CH_4 emissions
	Less CO ₂ emissions (10-20%) due to lower carbon content
Limitations in	Fuel availability, significant changes to fueling infrastructure and maintenance facilities maybe required
applicability, implementation and other issues	Volumetric energy content is ~4-5 times lower than diesel, hence requiring appropriate filling infrastructure
	Gas tank limits storage space and increases weight Limited experience in retrofit long term performance
54	

Environmental zones (EZs) Back	
Main application (engine, vehicle)	Road vehicles in urban areas
Pollutants addressed	• Real impact not easy to quantify and generalize • Indicative ranges from specific examples: PM (5-35%), NO _x (5-20%)
Cost	 €10m-60m initial set up, €1m-10m to run p.a. €50-250 penalty fine per day for non-compliant vehicles
Environmental side effects and synergies	EZs aim at having positive impact on practically all pollutants by accelerating natural fleet turnover, forcing owners of polluting vehicles to retrofit with upgraded aftertreatment equipment, or use hybrid vehicles, etc.
Limitations in applicability, implementation and other issues	Maybe required: fixed or mobile cameras, police enforcement, a lot of preparatory work
	Political and societal opposition may be faced (burdensome to economically disadvantaged operators of older vehicles)
	For greatest benefit, EZs should cover large geographical area (e.g. whole city) and affect the whole fleet
56	📻 emisia