UNECE Convention on Long-range Transboundary Air Pollution

EGTEI Methodology Work to update costs for LCP

SO₂, NO_x and PM abatement techniques

Second meeting 31 January 2012

Agenda

Information Gothenburg Protocol revision, NEC directive revision, LCP BREF process

- Outcomes of the kick off meeting objectives
- General hypothesis
- Co-firing of biomass
- ♦ Investments and operating costs for SO₂ reduction techniques
- ♦ Investments and operating costs for NOx reduction techniques
- Investments and operating costs for PM reduction techniques
- Collection of investments covering the techniques considered by the group and thermal capacities > 50 MWth
- Other issues

♦ Information Gothenburg Protocol revision, NEC directive revision, LCP BREF process

- ♦ Outcomes of the kick off meeting objectives
- ♦ General hypothesis
- Co-firing of biomass
- Investment and operating costs for SO₂ reduction techniques
- ♦ Investment and operating costs for NOx reduction techniques
- Investments and operating costs for PM reduction techniques
- Collection of investments covering the techniques considered by the group and thermal capacities > 50 MWth
- ♦ Other issues

Gothenburg Protocol

3

- Negotiations could be finalised in April 2012, if not in September 2012
- Introduction of PM2.5
- ♦ Set of ELVs which could be based on option 2 (for combustion installation, similar to IED)

 \blacklozenge No absolute ceilings but percentage of reduction of emissions, with 2005 as reference year

Flexibility mechanisms introduced to enable the addition of new sources, unexpected changes in emission factors, average emissions over 3 years,

· · · ·		-	-	
 Reductions announced 	% / 2005	EU	USA	СН
	SO2	-55	-58	-20
	NOx	-40	-47	-49
	NH3	-5		-13
	VOC	-35	-24	-32
	PM	-20	-24	-26

Revision of the NEC Directive

- NEC directive in revision
- Directive project expected in 2013
- ♦ 2025 or 2030 as target year possible
- Work programme for the determination of emissions in 2020 2030
- February:
- Report and on-line access to Final EC4MACS baseline emission scenario (GAINS/IIASA
- March-September:

Bilateral consultations MS experts / IIASA on GAINS emission calculations
(but not on energy scenarios!) to improve the EC4MACS Final Assessment
Submission of national energy/agricultural scenarios to IIASA for implementation in GAINS. GAINS data templates with PRIMES data will be provided by IIASA.

5

Revision of the NEC directive

- ♦ Work programme for the determination of emissions in 2020 2030
- March-September:
- New PRIMES 2012 baseline, with consultations of DG-ENER/PRIMES with
- MS energy experts
- June:
- Draft TSAP baseline (including first MS comments) presented to ESG
- Further feedbacks to IIASA up to September
- <u>December 2012:</u>
- Final TSAP baseline(s)

♦ Information Gothenburg Protocol revision, NEC directive revision, LCP BREF process

Outcomes of the kick off meeting – objectives

- General hypothesis
- Co-firing of biomass
- Investments and operating costs for SO₂ reduction techniques
- Investments and operating costs for NOx reduction techniques
- Investments and operating costs for PM reduction techniques
- Collection of investments covering the techniques considered by the group and thermal capacities > 50 MWth
- ♦ Other issues

Consider:

• Combustion plants > 50 MWth : investment functions to be developed for different ranges of size

(50 - 100 MW; 100 - 300 MW (or 500) -> 300 MW (or 500))

♦ Hard coal (HC), brown coal (BC), HFO and natural gas + **biomass wood** in cofiring up to 20 % with coal (non commercial gases and blast furnaces not covered)

- Different load factors (included in the cost function)
- Boilers and gas turbines (not yet stationary engines)
- Retrofit factor for existing plants : different retrofit factor according to different techniques

Derive:

♦ Yearly costs provided but also cost effectiveness (€/t pollutant eliminated), cost per MWth and or MWe as well as costs per MWh for different load factors

◆ Information Gothenburg Protocol revision, NEC directive revision, LCP BREF process

- Outcomes of the kick off meeting objectives
- General hypothesis
- Co-firing of biomass
- Investments and operating costs for SO₂ reduction techniques
- Investments and operating costs for NOx reduction techniques
- Investments and operating costs for PM reduction techniques
- Collection of investments covering the techniques considered by the group and thermal capacities > 50 MWth
- ♦ Other issues

Fuels considered

Fuels :

- ♦ BC: Brown coal Low calorific value between 15 to 20 GJ/t; S ?
- ♦ HC1: Hard coal grade 1 Low calorific value between 26 to 32 GJ/t, S > 1% w/w
- \clubsuit HC2: Hard coal grade 2 Low calorific value between 26 to 32 GJ/t, S : 0.6 to 0.8 % w/w
- ♦ HC3: Hard coal grade 3 Low calorific value between 26 to 32 GJ/t, S < 0.6 % w/w
- \clubsuit HF1: Heavy fuel oil grade 1 Low calorific value between 38 to 42 GJ/t, S > 1 % w/w
- \clubsuit HF2: Heavy fuel oil grade 2 Low calorific value between 38 to 42 GJ/t, S : 0.5% to 1 % w/w
- \clubsuit HF3: Heavy fuel oil grade 3 Low calorific value between 38 to 42 GJ/t, S < 0.5% w/w
- ♦ Gas: HHV: 30-47 MJ/Nm³ (L-Gas / H-Gas), S : 0.00012 to 0.0013 % w/w
- OS1: Wood Low calorific value between 13 to 18 GJ/t, S # 0% w/w

Dry waste gas flow rates per unit of energy <u>considered</u>

Boilers :

- For solid fuels (coals): $F_{ref} = 350 \text{ Nm}^3/\text{GJ}$ (6 % O₂, dry)
- For liquid fuels: $F_{ref} = 280 \text{ Nm}^3/\text{GJ} (3 \% \text{ O}_2, \text{dry})$
- For gaseous fuels: $F_{ref} = 270 \text{ Nm}^3/\text{GJ} (3 \% \text{ O}_2, \text{dry})$

What factor for wood ?

To be checked by experts

Other data to be used ? data from the CEN standard in elaboration to be used?

Gas Turbines:

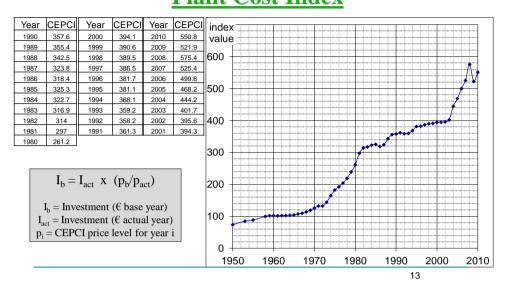
Conversion of 270 Nm³/GJ (3% O₂) to 810 Nm³/GJ (15% O₂)

11

Real condition waste gas flow rates per unit of energy (useful to use some references)

♦ For solid fuels (coals):	$F_{real} = ? Nm^3/GJ$ (% O ₂ real condition, humid)
----------------------------	--	---

• For liquid fuels: $F_{real} = ? Nm^3/GJ ((\% O_2 real condition, humid))$


• For gaseous fuels: $F_{real} = ? Nm^3/GJ ((\% O_2 real condition, humid))$

For biomass wood:	$F_{real} = ? Nm^3/GJ$ (% O ₂ real condition, humid)
-------------------	---

Boiler	% O2 real	Temp K	H real %	P real Pa	
HC					
BC					
HFO					
Natural gas					
Wood					12

<u>Chemical Engineering</u> <u>Plant Cost Index</u>

Exchange Rates USD / EUR

1990-2011

	Annual Average				Annual Average				Annual Average		
Year	DEM/USD	Min	Max	Year	ECU/USD	Min	Max	Year	EUR/USD	Min	Max
2001	0,458	0,429	0,488	2001	0,896	0,838	0,955	2011	1,392	1,289	1,488
2000	0,472	0,422	0,531	2000	0,924	0,825	1,039	2010	1,327	1,194	1,456
1999	0,545	0,512	0,603	1999	1,066	1,002	1,179	2009	1,394	1,256	1,512
1998	0,568	0,538	0,615	1998	1,121	1,070	1,212	2008	1,471	1,246	1,599
1997	0,579	0,532	0,651	1997	1,135	1,049	1,258	2007	1,371	1,289	1,487
1996	0,674	0,641	0,717	1996	1,270	1,238	1,318	2006	1,256	1,180	1,333
1995	0,707	0,642	0,742	1995	1,308	1,222	1,357	2005	1,245	1,167	1,362
1994	0,619	0,568	0,675	1994	1,189	1,104	1,284	2004	1,243	1,180	1,363
1993	0,606	0,576	0,637	1993	1,172	1,113	1,244	2003	1,131	1,038	1,263
1992	0,643	0,596	0,721	1992	1,297	1,207	1,458	2002	0,946	0,858	1,049
1991	0,604	0,545	0,685	1991	1,240	1,120	1,408	-			
1990	0,619	0,582	0,679	1990	1,273	1,185	1,395				

Exchange Rates GBP / EUR

1990-2011

	Annual Average				Annual Average				Annual Average		
Year	DEM/GBP	Min	Max	Year	ECU/GBP	Min	Max	Year	EUR/GBP	Min	Max
2001	0,318	0,305	0,328	2001	0,622	0,597	0,641	2011	0,868	0,832	0,905
2000	0,312	0,292	0,327	2000	0,609	0,571	0,640	2010	0,858	0,810	0,911
1999	0,337	0,318	0,364	1999	0,659	0,622	0,712	2009	0,891	0,843	0,961
1998	0,343	0,321	0,363	1998	0,676	0,639	0,714	2008	0,797	0,733	0,979
1997	0,354	0,326	0,384	1997	0,693	0,646	0,742	2007	0,685	0,655	0,735
1996	0,432	0,382	0,462	1996	0,814	0,737	0,850	2006	0,682	0,668	0,701
1995	0,448	0,411	0,468	1995	0,829	0,784	0,857	2005	0,684	0,662	0,707
1994	0,404	0,382	0,422	1994	0,776	0,743	0,802	2004	0,679	0,656	0,709
1993	0,403	0,387	0,429	1993	0,780	0,751	0,829	2003	0,692	0,650	0,724
1992	0,366	0,340	0,423	1992	0,737	0,698	0,820	2002	0,629	0,609	0,651
1991	0,342	0,334	0,353	1991	0,701	0,689	0,716				
1990	0,347	0,329	0,368	1990	0,714	0,682	0,750				

15

Agenda

Information Gothenburg Protocol revision, NEC directive revision, LCP BREF process

- ♦ Outcomes of the kick off meeting objectives
- General hypothesis
- Co-firing of biomass
- Investments and operating costs for SO₂ reduction techniques
- ♦ Investments and operating costs for NOx reduction techniques
- Investments and operating costs for PM reduction techniques
- Collection of investments covering the techniques considered by the group and thermal capacities > 50 MWth

Other issues

How can we include Biomass (Wood) Co-Firing?

- Limit type of co-firing to hard coal PC units with discrete amount of co-firing shares (i. e. 5%, 10%, 20%).
- Effect Calculation:
 - a) Define 100% biomass-only numbers (derive from e.g. Swedish data) and calculate co-firing cases by taking the weighted average

<u>or</u>

b) Take values from existing Co-Firing cases (if accessible)

To be done for: emissions at equipment inlet / outlet, equipment abatement efficiency, equipment lifetime (if applicable)

17

Effects of Biomass (Wood) Co-Firing – SO₂

S-content of wood: 0% => Reduction of SO₂ emissions by amount of co-firing percentage

Effects of Biomass (Wood) Co-Firing – PM

Different ash behaviour in boiler and in ESP, different fouling in ESP etc.

Effects of Biomass (Wood) Co-Firing - NOx

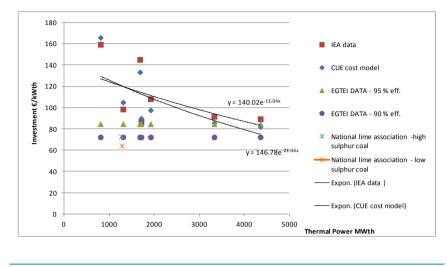
- Reduction of pre-SCR NO_x emissions due to lower combustion temperature. This effect will decrease for newer LNBs.
- Higher catalyst deactivation rates => Shorter operating cycles between regeneration.
- Effect on possible no. of regenerations not known.
- Experiences: Mainly in DK and NL, in SE with biomassonly plants.

Wet Flue Gas Desuphurisation with limestone (LSFO : limestone forced oxidation, and LSNO : limestone natural oxidation) Wet Flue Gas Desuphurisation with lime?

Dry flue gas desulphurisation for small installation with lime

21

Agenda


 Information Gothenburg Protocol revision, NEC directive revision, LCP BREF process

- ♦ Outcomes of the kick off meeting objectives
- General hypothesis
- Co-firing of biomass
- ♦ Investments and operating costs for SO₂ reduction techniques
- Investments and operating costs for NOx reduction techniques
- ♦ Investments and operating costs for PM reduction techniques
- Collection of investments covering the techniques considered by the group and thermal capacities > 50 MWth

Other issues

Investments for DeSOx - LSFO

23

Investments

Collect investments from real cases to cover the whole range of power – See the last slides and the list of parameters

Limestone demand current EGTEI data:	Efficiency of SO ₂ removal η	t CaCO ₃ /t SO ₂	Ratio Ca/S
	85.0%	1.41	0.90
	90.0%	1.48	0.95
	95.0%	1.59	1.02

Purity of limestone less than 100 %, reactivity less than 100 %.

Efficiency of SO ₂ removal η	t CaCO ₃ /t SO ₂	Ratio Ca/S		
85.0%	1.48	0.95		
90.0%	1.56	1.00		
95.0%	1.67	1.07		

 λ^s : specific limestone demand in ton CaCO₃/ton SO₂ removed to be checked by experts; Other data expected to derive the correct demand of CaCO₃ for different efficiencies of reduction

25

Lime demand :

 λ^s : specific lime demand in ton CaO/ton SO_2 removed to be provided ; Other data expected to derive the correct demand of CaO for different efficiencies of reduction

Limestone prices : between 30 to $40 \notin / t$ in France. Other data? Lime prices : ?

Variable operating costs : water <u>consumption</u>

Limestone slurry: Solid concentration from 15 – 20 % ? 30 % ? Validate the concentration to be taken into account in case of LSFO and LSNO Lime slurry: Solid concentration ? Validate the concentration to be taken into account in case of LSFO and LSNO

Water losses and purges to be compensated : 10 % of water demand To be validated

$$\label{eq:with LSNO} \begin{split} \underline{l^{bp}} &= l^s \, x \, 136/100 \text{ in case of byproduct (CaSO_3) produced} \\ \underline{With \, LSFO:} \\ l^{bp} &= l^s \, x \, 151/100 \text{ in case of gypsum produced} \end{split}$$

Prices of waste disposal ? €/t

Prices of gypsum sold ? €/t ? Depend on the quality?

29

Variable operating costs : electricity consumption

Electricity demand to overcome the pressure drop and auxiliairy equipemeent such as mist eliminator...

Data from the literature :

Coal with 1.3% S, efficiency 98% : 5.46 MW for equipment for an installation of 500 We or 1.1% of the net electricity production

LSFO : coal 1% S : 1.1 % of gross electrical output

coal 2.25 % S : 1.5 %

LSNO : coal 2.25 % S : 1.0 % of gross electrical output

LSFO 90 % efficiency :10 to 12 MW for a unit of 600 MWe

Obtain data to derive a function according to the sulphur content of coal or liquid fuel and the efficiency of desulphurisation required (LSFO and LSNO). Differences between LSFO and LSNO to be taken into account.

<u>Wages</u> Data from the literature : 12 operators (40 hours/week) for an existing 500 MWe and 8 for a new, 10 operators for a 600 MWe

 λ^{wage} : specific demand in human resource for control of the FGD and its operation as well as maintenance operation in number of operators. Function according to the size to be determined from examples provided by experts for LSFO and LSNO. Is the factor constant according to the size?

31

Fixed operating costs

Fixed operating costs depend on the capacity or size of the installation, i.e. on the investment and are expressed as a percentage of the unit investment.

They include costs of maintenance and repair, insurance, administrative overhead, etc. Taxes are not included in order to be coherent with GAINS.

According to one reference, fixed operating costs are 2.5 % of investment for an existing plant and 3.3 % for a new installation. EGTEI considered 4 % of the investment.

Percentage to be validated: 4 % of the investment or another factor. Is the factor lower for LSFO than for LSNO?

◆ Information Gothenburg Protocol revision, NEC directive revision, LCP BREF process

- Outcomes of the kick off meeting objectives
- General hypothesis
- Co firing of biomass
- ♦ Investments and operating costs for SO₂ reduction techniques
- Investments and operating costs for NOx reduction techniques
- ◆ Investments and operating costs for PM reduction techniques
- Collection of investments covering the techniques considered by the group and thermal capacities > 50 MWth
- ♦ Other issues

33

DeNOx equipment

- Primary Measures:
 - Low NOx Burner (LNB) for all types of LCP
 - FGR possibly for gas furnaces
 - Water / Steam Injection for Gas Turbines
- Secondary Measures:
 - SCR for all types of LCP
 - SNCR (for certain cases only which?)

<u>Typical / Reported NO_x Emissions</u> [Heinze 1999, Rentz 2002]

NO _x Emissions (mg/Nm³)	HC-PC	BC-PC	CFB- HC	CFB- BC
Baseload (w/o LNB)	800-1,300(1)	500-800	< 200	< 200
LNB (pre-1999)	300-500	140-175	-	-
LNB+SCR	90-200	-	-	-

NO _x Emissions (mg/Nm³)	Oil-HSFO	CCGT- HEL	CCGT- Gas
"Primary Measures"	-	-	40-120
Water Injection	-	260	-
LNB+SCR	120-130	-	-

(1): Lower End of Range for Tangentially Fired Boiler, Upper End of Range for Wall Fired Boiler

35

Suggested Default Emission Levels

NOx Boiler Outlet Emissions in mg/Nm ³ at corrected O ₂ -Level	Baseload	1°/LNB 1st Generation	1°/LNB 2nd Generation	1°/LNB 3rd Generation
Lignite	650	300	200	150
Hard Coal (Bit) – Tang.	800	500	400	300
Hard Coal (Bit) – Wall.	1,100	700	550	400
Heavy Fuel Oil	1,000			
GAS – GT		50	25	
GAS – Furnace				

- NO_x conversion: 90%
- Minimum NO_x outlet concentration at plants with new generation LNBs: 35-40 mg/Nm³
- NH₃ slip < 1 ppmv
- Catalyst regeneration each 1-3 years (low end for biomass co-firing)
- SCR setup in general 3 catalyst layers, sometimes up to 5 layer

37

NO_x Emissions at SCR Outlet:

- NO_x emissions at existing HC-fired PC-plants: 1st and 2nd generation LNB + (3+1) SCR: 130-180 mg/Nm³
- ELVs of Dutch installations of 2005 and later¹: CCGT: 20 mg/Nm³ (15% O₂) Gas Furnace: 25 mg/Nm³ (3% O₂) Coal/Biomass: 50-65 mg/Nm³ (6% O₂)

Next Steps for NO_x (I)

• Validation / Comments on presented data to fill out the following table:

	HC-PC	HC-CFB	BC-PC	BC-CFB	Oil - B	GAS – B	GAS - CCGT	
Baseline								
1st Gen. PM								
2nd Gen. PM								
3rd Gen. PM								
SCR		Only, if calculating with an average / individual						
(SNCR)		a	batemen	t efficienc	y is not	suitable		

39

Next Steps for NO_x (II)

Suggestion for SCR default values (derived from HC cases):

- average abatement efficiency (3+1 layer): 85%
- average $\rm NH_3$ consumption: 0.3 t $\rm NH_3/t$ $\rm NO_x$ abated (SR: 0.85)
- Power consumption: 0.3% of gross electrical output
- Total catalyst lifetime: 75,000 hrs
- Catalyst regeneration: every 15,000 hrs (fossil fuel-only)
- Specific amount of catalyst needed: 0.32 m³/MW_{th}

Next Steps for NOx (III)

- Agree on SCR catalyst data (lifetime, spec. catalyst volume, regeneration cycles, etc.)
- · Decide, whether to include SNCR/FGR or not
- Decide, how to proceed with different size classes (do technical numbers change?)
- Decide on how to modify catalyst lifetime when co-firing biomass (which numbers, e. g. 1/3 of fossil-fuel only?)

41

Agenda

 Information Gothenburg Protocol revision, NEC directive revision, LCP BREF process

- Outcomes of the kick off meeting objectives
- General hypothesis
- Co-firing of biomass
- ♦ Investments and operating costs for SO₂ reduction techniques
- ♦ Investments and operating costs for NOx reduction techniques
- Investments and operating costs for PM reduction techniques
- Collection of investments covering the techniques considered by the group and thermal capacities > 50 MWth

Other issues

PM reduction techniques

	10 mg/Nm3	20 mg/Nm3	30 mg/Nm3	50 mg/Nm3
FF	у	у	у	у
2 fields ESP	n	n	With FGD?	With FGD?
3 fields ESP	n	With FGD?	У	У
4 fields ESP	?	У	У	У
6 fields ESP	у	У	у	У

From Simon Schulte – determination of costs for activities of annexes IV, V and VII for boilers and process heaters $% \left({{{\bf{N}}_{{\rm{N}}}}} \right)$

43

PM reduction techniques

- · Provide information on wage demand for FF and ESP
- Provide information on electricity consumption :
- $\circ~$ Pressure drop for ESP and FF
- $\circ~$ Power needed for electrodes and pulse jet cleaning

	FF		ESP		
	Pressure drop mbar	Power for pulse jet cleaning	Pressure drop mbar	Power for electrodes	
5 mg/Nm3	10 to 12	1360 kW for a 800 MWe burning coal	3 to 4	1060 kW for a 800 MWe burning coal	
10 mg/Nm3	?	?	?	?	4
20 mg/Nm3	?	?	?	?	

PM reduction techniques

- Bag lifetime : 20000 to 30000 hours ?
- What is done with dust recovered (waste disposal, recovery) ?
- · Prices of waste disposal or dust sold?

Agenda

 Information Gothenburg Protocol revision, NEC directive revision, LCP BREF process

- Conclusions from the kick off meeting objectives
- General hypothesis
- Co firing of biomass
- ♦ Investments and operating costs for SO₂ reduction techniques
- Investments and operating costs for NOx reduction techniques
- Investments and operating costs for PM reduction techniques
- Collection of investments covering the techniques considered by the group and thermal capacities > 50 MWth

Other issues

Collection of investments

Questionnaire

List of parameters to be collected to characterise the installation for which investments will be provided:

♦ Age of the installation, thermal capacity MWth,

◆ Short description of the installation (number of boilers linked to the FGD, type of boiler) – new or existing installation when the reduction technique was installed?

◆ Fuels used : type, low calorific value, % S, ash content (HC1 to 3; BC; HF, NG, wood),

4	7

Collection of investments

List of parameters to be collected to characterise the installation for which investments will be provided:

For each process considered : LSFO, LSNO, SCR, SNCR, ESP, FF, LNB, other techniques if necessary

information on the reduction technique,

Inlet concentration of SO2, NOx or PM to be abated (according to the technique),

♦ Outlet average SO2, NOx or PM concentrations obtained (according to the technique) - Efficiency

- ✤ Year of the investment, investment for each technique
- Components of the costs included in the investments provided (detail the components taken into account for comparison reason)

Information Gothenburg Protocol revision, NEC directive revision, LCP BREF process

- Conclusions from the kick off meeting objectives
- General hypothesis
- Co-firing of biomass
- \clubsuit Investments and operating costs for SO₂ reduction techniques
- Investments and operating costs for NOx reduction techniques
- Investments and operating costs for PM reduction techniques
- Collection of investments covering the techniques considered by the group and thermal capacities > 50 MWth
- Other issues

49