Final Background Documents

on the sector

ORGANIC CHEMICAL INDUSTRY

Prepared in the framework of EGTEI

Prepared by CITEPA, Paris

INTRODUCTION

1 General introduction and explanation

In order to estimate costs of NMVOC emission reduction in the **organic chemical industry**, it has been decided to characterize it into 4 sections and to consider an illustrative example for representing each of these sections [1].

Costs defined for each of these 4 illustrative examples are assumed to be representative of the whole chemical industry. This could be considered as an over simplified representation of this complex industry but this is the only feasible approach considering time and budget limits of this study.

The illustrative examples are as follows:

- 1. The **steam cracking** process with naphtha as feedstock and ethylene and propylene as products is considered as the illustrative example taken into account for representing all the production of lower olefins (ethylene, propylene, butanes and butadienes). Liquid naphthas (from crude oil refining, C6 to C10 hydrocarbons that boil in gasoline range of 50-200°C) account for 73 % of ethylene production. Other feed stocks are less significant. They are as follows: gas-oil 10%, butane (6%), ethane (5%), propane (4%) and other sources (2%). Ethylene and propylene are the unsaturated compounds produced in the largest quantities (compared to other compounds. Ethylene and propylene represent 45 % of product yields when naphtha is used as feedstock [2]) from steam crackers. The total production capacity of ethylene in the EC is 20 millions tonnes per year and accounts for some 25 % of the world supply. 9,6 Mt of propylene are also produced on steam crackers (4,9 Mt are supplied from extraction of propylene from refinery catalytic cracker off gas). Within the EC, there are 50 steam crackers and these are located on 39 sites [2].
- 2. The PVC suspension process for representing a production of chemicals with sanitary impact.
- 3. A process of the **downstream chemistry** for representing production of chemicals except the steam crackers, the PVC production and the speciality chemical industry. This production can be also representative of no sanitary impact unit.
- 4. Production of pharmaceutical active ingredients representing the **speciality chemical industry** (production in batch processes and multipurpose plants). During the meeting of 22/07/02 between CITEPA and the French Union of Chemical Industry (UIC) [1], it was decided to consider the pharmaceutical product manufacturing as the representative activity for the whole speciality organic chemistry. It is consequently assumed that costs derived for the pharmaceutical product manufacturing are representative of the whole speciality organic chemistry.

NOTE : Only **process VOC emissions** are considered in the document presented. VOC emissions from storage and handling of chemical products are not considered for the time being by EGTEI.

For these four sub-sectors, the activity levels are represented and documents have been prepared as follows:

1. Steam cracking:

<u>Activity:</u> production of ethylene and propylene (from steam cracking, that is to say that the extraction of propylene from refinery catalytic cracker off gas has not to be considered).

SNAP sources covered : SNAP 04 05 01 production of ethylene and SNAP 04 05 02 production of propylene (from steam crackers).

NFR 3C.

The document has been prepared on the basis of information provided by an expert group from UIC and CEFIC [3], [4].

2. PVC suspension process:

Activity: production of PVC by the suspension process.

Part of SNAP 040508.

NFR 3C

The document has been prepared on the basis of information provided by an expert group from Solvay, Atofina, LVM and SPMP [5].

3. Down stream units

(following the steam cracker), (all processes of the organic chemistry except steam crackers, the PVC suspension process and the speciality chemical industry).

<u>Activity:</u> due to the large number of sources covered, the activity level is directly defined as **VOC** emissions declared by Parties for the sources covered by this sector.

This sector is assumed to cover the following SNAP sources:

- SNAP 04 05 03/04/05 production of 1,2 dichloroethane/vinyl chloride,
- SNAP 04 05 06/07 production of polyethylene, high and low density,
- SNAP 04 05 09 to 04 05 27 from production of polypropylene to other chemical compounds except 040522 storage and handling of chemical products (According to the cases, the VOC emissions from non pharmaceutical active ingredients could be considered under this SNAP code. In that case emissions have not to be taken into account).

NFR 3C

The document has been prepared in cooperation with the French Chemical Union (UIC) and CEFIC, and expert from ADEME [3], [4].

4. Speciality chemical industry:

Production of pharmaceutical active ingredients representing the production of chemicals in batch processes and multipurpose plants.

Activity: solvent input (new + recycled solvent)

The pharmaceutical product manufacturing is covered by SNAP 06 03 06 and included in NFR 3C Chemical product manufacture and processing. The production of other types of products (non pharmaceutical products) is not well represented in the SNAP. Depending on each situation, emissions from this last activity could be encountered under SNAP codes like 060314: other chemical products manufacturing or processing as carried in the French emission inventory or code 040527 could also be used by some parties.

The document has been prepared on the basis of information provided by the SICOS : French Association of the Organic Chemistry and Biochemistry Industries [6].

This document presents results for :

- 1. Steam cracking,
- 2. PVC suspension process,
- 3. Downstream units,

The speciality organic chemistry is presented in a separate document.

2 Data from the literature

2.1 Data currently used in the RAINS model

As required by national experts, information is provided on costs data and parameters presently used in RAINS.

In its present stage of development, the RAINS model considers the sector ORG PROC for representing the whole organic chemical industry except pharmaceutical products represented by the sector PHARMA. The activity level is directly represented by the VOC emissions [7] due to the difficulty to know the levels of production of chemicals and difficulties to represent such a complex sector (several products are produced on the same process and many production levels are confidential). Storage of chemical products is considered under sector ORG_STORE.

2.1.1 Control options

Four options for emissions reduction are considered in ORG PROC:

- Reduction of fugitive emissions due to defective sealing of equipments by regular monitoring and repair program (LK_I and LK_II). Technical efficiency is estimated to range from 60 to 70% and applicability factor to 20%.
- Flaring (FLR) is estimated to reduce vent losses by about 85 to 90%. The applicability factor is determined by the amount of venting losses (20 to 40% of total emissions of the sector)
- Add-on techniques such as incineration (INC). Efficiency is estimated to 96% and applicability factor to 50%.

2.1.2 Abatement measure costs

Costs used for the some Parties are presented in table 2.1.2.1. to 2.1.2.4.

	Emission factors	Applicability	Technical	Cost
	kg VOC/kg VOC		efficiency	
		%	%	€1990/t VOC
Activity level 1990: 19.8	8 kt VOC, 2010: 23.32 k	t VOC;		
VOC emissions scenari	o business as usual: 199	00: 19.8 kt VOC, 201	0: 23.2 kt VOC	
No control	1.0	0	0	0
LK_I	0.88	20	60	1587
LK_II	0.86	20	70	5758
FLR	0.73	30	90	341
INC	0.52	50	96	778
$LK_I + FLR$	0.61	50	78	363
LK_I + INC	0.4	70	86	773
$LK_I + INC + FLR$	0.13	100	87	524
LK_II + FLR	0.59	50	83	467
LK_II + INC	0.38	70	89	965
LK_II + INC + FLR	0.11	100	89	595

Table 2.1.2.1: Costs data used in the RAINS model [8] for ORG PROC in France

 Table 2.1.2.2: Costs data used in the RAINS model [8] for ORG PROC in Germany old Landers

	Emission factors kg VOC/kg VOC	Applicability	Technical efficiency	Cost
	0 0	%	%	€1990/t VOC
Activity level 1990: 65	kt VOC, 2010: 130 kt VO	DC		
VOC emissions scenari	o current regulation: 1	990: 50.25 kt VOC, 2	2010: 50.04 kt V	OC
No control	1.0	0	0	0
LK_I	0.88	20	60	1587
LK_II	0.86	20	70	5758
FLR	0.745	30	85	341
INC	0.52	50	96	778
$LK_I + FLR$	0.625	50	75	363
LK_I + INC	0.4	70	86	773
$LK_I + INC + FLR$	0.145	100	86	524
LK_II + FLR	0.605	50	79	467
LK_II + INC	0.38	70	89	965
$LK_II + INC + FLR$	0.125	100	88	595

	Emission factors	Applicability	Technical	Cost
	ng voerng voe	%	%	€1990/t VOC
Activity level 1990: 7.0	18 kt VOC, 2010: 14.035	5 kt VOC		
VOC emissions scenari	o current regulation: 19	990: 7.018 kt VOC,	2010: 7.42 kt VC)C
No control	1.0	0	0	0
LK_I	0.88	20	60	1587
LK_II	0.86	20	70	5758
FLR	0.745	30	85	341
INC	0.52	50	96	778
$LK_I + FLR$	0.625	50	75	363
LK_I + INC	0.4	70	86	773
$LK_I + INC + FLR$	0.145	100	86	524
LK_II + FLR	0.605	50	79	467
$LK_II + INC$	0.38	70	89	965
$LK_{II} + INC + FLR$	0.125	100	88	595

Table 2.1.2.3: Costs data used in the RAINS model [8] for ORG PROC in Germany new Landers

Table 2.2.1.4: Costs data used in the RAINS models [8] for ORG PROC in Hungary

	Emission factors	Applicability	Technical	Cost
	kg VOC/kg VOC		efficiency	
		%	%	€1990/t VOC
UK: activity level 1990	: 1.289 kt VOC, 2010: 1.	53 kt VOC		
VOC emissions scenari	o business as usual: 199	00: 1.29 kt VOC, 201	0: 1.53 kt VOC	
No control	1.0	0	0	0
LK_I	0.88	20	60	1587
LK_II	0.86	20	70	5758
FLR	0.745	30	85	341
INC	0.52	50	96	778
$LK_I + FLR$	0.625	50	75	363
LK_I + INC	0.4	70	86	773
$LK_I + INC + FLR$	0.145	100	86	524
LK_II + FLR	0.605	50	79	467
LK_II + INC	0.38	70	89	965
$LK_{II} + INC + FLR$	0.125	100	88	595

Data are also available for other Parties. They can be downloaded on IIASA's web site [3]. Investments and operating costs are not more detailed in current available documents and CITEPA cannot present more explanations.

1.2 Other sources of data

The literature is quite poor concerning data on NMVOC emission reduction costs from the chemical industry. Most of data presented in this document have been obtained from industry (UIC [3] and CEFIC [4], producers of PVC [5], SICOS [6]).

3 References for the introduction

- [1] MONZAIN M. (UIC) ; MONGENET F. (UIC) ; CASTRO F. (UIC): Meeting held in Paris on 21/08/02 with N. ALLEMAND and J. VINCENT from CITEPA aiming at defining the best approach for cost definition in the organic chemical sector. Minutes of the meeting.
- [2] IPPCB BREF large volume organic chemical industry February 2003
- [3] MONZAIN M. (UIC), LUYTEN P. (Atofina) and MARLIER G. (UIC): data collected in France for documenting the EGTEI work and the preparation and discussion of a project of regulation of fugitive emissions on steam crackers of the French ministry of environment.
- [4] MONZAIN M. (UIC); DE MOULIN J.M. (CEFIC); HARSHAM K. (CEFIC); MARLIER G. (UIC); SCOLES G. (Shell chemicals); : Meeting held in Paris on 13/03/03 with N. ALLEMAND from CITEPA for the cost definition in steam cracking. Minutes of the meeting.
- [5] Expert group from PVC manufacturers : TRIOPON S. (LVM); LIEGEOIS R. (Solvay); LOUIS H. (Atofina); BINDELLE J.P. (Solvay), DE CHAMPS F. (SPMP).
- [6] SYNDICAT DE L'INDUSTRIE CHIMIQUE ORGANIQUE DE SYNTHESE ET DE LA BIOCHIMIE - INDUSTRIAL EXPERTS (RHODIA, AVENTIS, LIPHA, EXPANSIA, HOECHST MARION ROUSSEL, SANOFI, SIPSY CHIMIE FINE, ISOCHEM):
- [7] KLIMONT Z. ; AMANN M. ; COFALA J. : Estimating costs for controlling emissions of NMVOC from stationary sources in Europe Report IR – 00- 51 IIASA – August 2000
- [8] IIASA web site for NMVOC emission documents : http://www.iiasa.ac.at/~rains/voc_review.html

Steam cracking

This section concerns the steam cracking.

<u>Activity:</u> production of ethylene and propylene (from steam cracking, that is to say that the extraction of propylene from refinery catalytic cracker off gas has not to be considered).

SNAP sources covered: SNAP 04 05 01 production of ethylene and SNAP 04 05 02 production of propylene (from steam crackers).

NFR 3C.

The document has been prepared on the basis of information provided by an expert group from UIC and CEFIC [5], [6] and the help of expert from ADEME.

1 Data from the literature

Please refer to chapter 2 of the introduction for detail.

2 Short technology description

Steam cracking units are complex installations in which suitable hydrocarbons (naphtha, gas-oil...) are heated to very high temperatures, in the presence of steam, to spilt the molecules into olefins of lower molecular weigh (unsaturated hydrocarbons: ethylene, propylene, butanes, butadienes). An excellent description of the process is given in the BREF document on large volume organic compounds [4]. The process can be divided in 3 sections :

- The pyrolysis section where the feedstock is converted into unsaturated compounds in a cracking furnace with superheated steam.
- The primary fractionation and compression section that consists of a primary fractionator, quench tower, gas compressor and gas cleaning up facilities [4].
- The product fractionation zone where fractionation towers are used to separate the desired products.

Olefin plants are part of integrated petrochemical and/or refining complex. Common utilities are provided by central facilities. It is very difficult to compare emissions from unit to unit since plant boundary definitions and degree of integration of each plant are different. All or part of the storage facilities for example can be present depending on the production structure and connexions with upstream and downstream units. Moreover, estimation of emissions is a difficult issue in this activity and methodologies used from plant to plant, country to country are not the same.

Different feed stocks produce different ethylene and propylene yields and ranges of products. When naphtha is used, ethylene and propylene represent 45 % of the product yields (other products are for example methane, propane, ethane, acetylene, butadiene, butylenes...) [4].

Figure 2.1 presents a simplified diagram of the process and associated units (storage...).

The code for characterising VOC emissions are issued from the EU VOC emission directive.

01: stack emissions

02: emissions of VOC from waste water treatment plant

04: fugitive emissions

Each source from one category is numbered (for example 04-1, fugitive emission from unloading ships and associated storages).

NOTE : In this document, only emissions from the flare, the process itself (channelled emissions and fugitive emissions) are considered. Emissions from storage are not taken into account under this document. In the scope of the EGTEI work, no working document has been developed for "storage of organic compound".

1. VOC emissions from the flare systems:

All steam crackers are equipped with flare gas systems to allow safe disposal of hydrocarbons or hydrogen that cannot be recovered in the process. Flaring is continuously operated and used during planned shutdowns, start-ups and unstable production periods. According to reference [4], based on an inquiry of CEFIC, hydrocarbon quantities sent to the flare range from 0,03 to 50 kg hydrocarbon per tonne ethylene. Table 2.1 presents the proportions of steam crackers emitting in different ranges of hydrocarbon per tonne of ethylene.

Table 2.1: Ranges of hydrocarbon quantities sent to the flare according to the enquiry of CEFIC [4]

kg hydrocarbon feed / t ethylene	Proportion of steam crackers with these emissions
0.03-2,2	1/3 of steam crackers
2,4-18	1/3 of steam crackers
21-50	1/3 of steam crackers

2. Other VOC stack emissions (represented by 01 on figure 2.1):

During normal operation, VOC emissions from the steam cracking process are recycled into the process, used as a fuel or routed to associated processes on an integrated site. Stack emissions are generally very low.

3. Diffuse and fugitive VOC emissions (represented by 04 on figure 2.1):

Steam crackers have a high number of components with potential leaking points of which could potentially arise fugitive emissions. Process streams are generally composed of light products (at least 20 % of substances with vapour pressure greater than 300 Pa at 20 °C) under high pressure (1500 – 3000 kPa) [4].

Fugitive emissions arise from: valve glands, pipe flanges, open ended lines, pressure relief valves, other piping components, pumps, compressors seals...

A steam cracker unit is stopped at regular intervals (periodicity may range from 4 to 5 years) for controls and maintenance.

Tightening of leaking equipment is an essential operation of a Leak Detection And Repair programme (LDAR). It can be achieved on line with the process in operation (tightening operation), but suppression of most important leaks can only be achieved during planned shutdowns with isolation and degassing of the corresponding sector. Dismantling or exchange of the pieces of equipment is required.

Figure 2.1: Steam cracking unit and its associated storage - sources of emissions

EU regulation

The chemical industry is concerned by Directive IPPC. No emission limits are implemented.

3

4 **Definition of reference installations**

From data collected by UIC at French level [5] and CEFIC at European level, the reference installation can be defined as a steam cracker with a capacity of 480 000 t of ethylene (the leading output of the cracker) and 270 000 t of propylene and naphtha as feedstock (the largest feedstock used).

Stack VOC emissions from the cracking process can be assumed to be recycled at a maximum level into the process or used as a fuel or routed to associated processes. Total emissions are about 50 t.

All steam crackers are equipped with elevated flare gas systems to allow efficient destruction of hydrocarbons or hydrogen that cannot be recovered in the process. The average efficiency is 99,5 % [5]. The presence of such an elevated flare is taken into account in the reference installation. Emissions are to be about 30 t (included in the 50t presented above).

The boundaries of the reference installation taken into account for estimating costs of reduction measures, exclude diffuse emissions from storage and loading/unloading operations. The grey zones on table 4.2 represent activities excluded.

On average according to UIC, this installation has about 50 000 potentially leaking points (valves, flanges, pumps, open ends...) of which 40 000 are accessible for control and repair. In the scope of this study, a simplified installation with 50 % valves and 50 % flanges is considered.

 Table 4.1: Definition of the reference installation

Reference	Description
Installation	
Code	
01	Steam cracker unit with a capacity of 480 kt of ethylene + 270 kt propylene and
	naphtha as feed stock.
	Elevated flare systems with efficiency of 99.5%, VOC emission : 30 t/year.
	Other stack VOC emissions from the cracking process recycled into the process,
	used as a fuel or routed to associated processes and maintained as low as possible.
	Stack VOC emissions : 20 t/year. Without measure, total VOC emissions are 2500
	t (other emissions come from storage and waste water treatment plant)
	50 000 potentially leaking points (valves, pumps, flanges, open ends);
	40 000 accessible points : 50 % valves and 50 % flanges.

These assumptions are derived from data collected by UIC at French level [5] and CEFIC at European level. The different VOC emission sources from a steam cracker unit are described in table 4.2 for an installation without any program of emission reduction implemented [5]. It has to be outline that the measurement techniques used in Europe to estimate fugitive emissions from steam cracking units and other processes of the chemical industry are not yet well defined.

Emissions depend on the methodology used. The EPA 21 method [7] is used some times. This method begins to be used in France. There are discrepancies between emissions declared previously by industry and the emissions estimated with EPA 21 method. The EPA 21 presents several techniques for estimations. Each of these techniques gives different results **and this can have consequences on the cost effectiveness of the LDAR program.**

Fugitive emissions of the reference installation are defined with the use of correlation equations provided by US EPA for SOCMI (Synthetic Organic Chemicals Manufacturing Industry) [7]. From

measurement in ppm of VOC around a leaking point, the correlations give a quantity of VOC emitted in kg/year. EPA has established the correlation (table 5.1.3). Specific correlations defined by industry especially for steam cracking are existing. Generally the use of specific correlations gives lower emissions than the use of general SOCMI equations provided by EPA.

The CEN [8] is presently working on the redaction of a standard for the determination of leaks of VOC from process equipment. The use of EPA correlations is recommended if user defined correlations are not available.

Table 4.2: Ranges of emissions of a steam cracking unit without any program of emission reduction implemented (refer to figure 2.1 for characterising sources of VOC emissions).

Installation without any reduction technique	VOC emission t/year
Stack emissions	
Flux 01-1 – Stack	0.8
Flux 01-2 – Decoking	
Flux 01-3 – Compressors vents	10
Flux 01-4 – Vents - separation of products	10
Flux 01-5 – Flare	30 ⁽²⁾
Total stack emissions	50
Diffuse emissions	
Flux 04.1 – Storage of raw materials	100
Flux 02 – Waste water	100
Flux 04-5 – Storage of final products	100
Flux 04-6 – Loading and unloading	150
Total diffuse emissions	450
Fugitive emissions	
Flux 04-2 - Fugitive storage – raw material	100
Flux 04-3 - Fugitive storage - finished products	150
Flux 04-4 – Fugitive - process	2250
Total fugitive emissions	2500
Subtotal	3000

(1) Very different situations are met depending on production structure: raw materials supplied by pipe, ship, train, ... storage located in the upstream refinery or on site ... etc.

(2) Efficiency of the elevated flare is 99.5 %.

Figure 2.1 presents the simplified flowchart of the process and sources of NMVOC emissions.

5 Emission abatement techniques and costs

5.1 Definitions of primary measures

As explained in chapters 2 and 4, potential reductions only exist on NMVOC fugitive emissions but not on stack emissions that are well controlled. Fugitive emissions can be reduced through a Leak Detection And Repair programme [7].

The technique for LDAR consists in measuring the concentration of VOC in the atmosphere around the potential leak, then selecting equipments leaking over a defined threshold value and finally operating a repair on those leaking items.

A LDAR programme is established according to the following principles:

- 1 The definition of what constitutes a leak and fixation of corresponding thresholds,
- 2 The fixation of the frequency of inspections,
- 3 The listing and identification of components included,
- 4 The procedures concerning repair of leaking components depending of the leak category.

Repair procedures related to leak category considered in primary measures are indicated in table 5.1.1.

4 LDAR programmes are considered for the estimation of costs. They differ from the level of leak considered and type of maintenance carried out.

	Table 5.1.1: Definition of	of leak and repair	programme considered in	primary measures 00 to 04
--	----------------------------	--------------------	-------------------------	---------------------------

	Leaks < 1000	Leaks from	Leaks from	Leaks from	Leaks > 100000
	ppm	1000 to 5000	5000 to 10000	10000 to 100000	ppm
		ppm	ppm	ррт	
PMC 00			No action on leaks		
					Tightening after
					detection and
PMC 01	No action	No action	Tightening after	Tightening after	basic
	No action	No action	detection	detection	maintenance
					during sche-
					duled shutdown
		Tightening ofter	Tightening offer	Tightening afte	er detection and
PMC 02	No action	detection	detection	basic mainte	nance during
		detection	detection	scheduled	shutdown
DMC 02	No action	Tightening after	Tightening afte	r detection and bas	sic maintenance
FINIC 03	No action	detection	duri	ng scheduled shutd	own
				Tightening afte	er detection and
				basic mainte	nance during
PMC 04	No action	Tightening after	Tightening after	scheduled shutdown for flang	own for flanges
	No action	detection	detection	Tightening after detection and	
				heavy mainte	enance during
				scheduled shute	down for valves

Refer to the definitions here after

The following definitions have been considered:

Equipment tightening can be made with equipment **in operation** (except with remote control valves (eg tightening bolts to eliminate leaks from valves stems or flanges, installing tightening caps on open ends...).

Maintenance with dismantling equipment or exchange can only be implemented during plant shutdowns with circuits insulation and degassing. So, during plant shutdowns, two kinds of maintenance have been characterized:

Basic maintenance : maintenance on the equipment (flanges + valves) to remove some parts or to change the equipment with a new one of the same technology.

Heavy maintenance : complete change of the valves with valves of the higher grade standard, not leaking technology. Basic maintenance is maintained for the flanges.

It is considered that to **establish the LDAR program**, it is necessary to invest in a database with all potentially leaking points first measured (100 % of accessible points are considered and controlled). Then, the results of these first exhaustive measures campaign are analysed to initiate the repairing actions specific to each primary measures, including shutdown repairing. Then, each leak repaired is once again controlled to take in account the efficiency of the intervention.

For the following years, before next shutdown, the frequency of leak controls is estimated to 20 % of accessible points. Following the level of measured concentration, the leaking points (> 1 000 or 5 000 ppm depending of PMC) will be repaired by tightening on line.

At the next shutdown, the maintenance intervention (basic or heavy depending on PMC) will occur.

Primary Measure	Description
00	No LDAR programme
01	Establishment of the LDAR program Inventory of all components and establishment of a database. First survey of all potential leak points of the plant (100 % of accessible points are considered and controlled), analysis of the first results of the survey.
	Basic maintenance for 100 % points > 100 000 ppm during first shut down. Annual control between two shutdowns Intermediate campaign before shutdown: 20 % of accessible points are controlled each
	year (in five years all points are controlled). Tightening each year for 100 % controlled points > 5 000 ppm. Next Shutdown.
	Basic maintenance for 100 % measured points (during the 5 years) > 100 000 ppm.
02	Establishment of the LDAR program Inventory of all components and establishment of a database. First survey of all potential leak points of the plant (100 % of accessible points are considered and controlled), analysis of the first results of the survey. Tightening for points > 1000 ppm.
	Annual control between two shutdowns Intermediate campaign before shutdown : 20 % of accessible points are controlled each year (in five years all points are controlled). Tightening each year for 100 % controlled points > 1 000 ppm.
	Next Shutdown Basic maintenance for 100 % measured points (during the 5 years) > 10 000 ppm.
03	Establishment of the LDAR program Inventory of all components and establishment of a database. First survey of all potential leak points of the plant (100 % of accessible points are considered and controlled), analysis of the first results of the survey. Tightening for points > 1 000 ppm . Basic maintenance for 100 % points > 5 000 ppm during the first shut down
	Annual control between two shutdowns Intermediate campaign before shutdown : 20 % of accessible points are controlled each year (in five years all points are controlled). Tightening each year for 100 % measured points > 1 000 ppm. Next Shutdown Basic maintenance for 100 % measured points (during the 5 years) > 5 000 ppm.
04	Basic maintenance for 100 % measured points (during the 5 years) > 5 000 ppm. Establishment of the LDAR program Inventory of all components and establishment of a database.
	First survey of all potential leak points of the plant (100 % of accessible points are considered and controlled), analysis of the first results of the survey. Tightening for points > 1 000 ppm Basic maintenance for flanges points >10 000 ppm during the first shut down. Heavy maintenance for valves points > 10 000 ppm during the first shut down.
	Annual control between two shutdowns Intermediate campaign before shutdown: 20 % of accessible points are controlled each year (in five years all points are controlled). Tightening each year for points > 1 000 ppm.
	Next ShutdownBasic maintenance for 100 % measured (during the 5 years) > 10 000 ppm.Heavy maintenance for 100 % measured (during the 5 years) > 10 000 ppm.

Table 5.1.2: Pr	imary measure definition
-----------------	--------------------------

Correlation between ppm measurement and VOC emitted quantities :

The SOCMI correlations between screening values and emission rates are in the form [7]:

 $ER = A \cdot (SV)^{B}$ with ER = emission rate in kg/h/pt and SV the screening value (ppm).

These correlations are valid between 0 and 100 000 ppm. For screening value higher than 100 000 ppm a fixed or pegged value is used always given by EPA.

The value of A and B parameters for the different equipment are as follows [7]:

Table 5.1.3: value of parameters A and B and of the pegged values according to SOCMI correlations [7]

Source	Service	Α	В	Pegged value > 100000 ppm Kg/h
Valve	Gas	$1.87 \ 10^{-6}$	0.873	0.110
Valve	Light liquid	6.41 10 ⁻⁶	0.797	0.150
Pump seal	Light liquid	$1.90 \ 10^{-5}$	0.824	0.620
Connector	All	3.05 10-6	0.885	0.220

5.2 Secondary measures

No secondary measure is taken into account.

5.3 Emission factors, cost data and uncertainties of the different combinations

Table 5.3.1: Emission factors, investments, operating costs, abatement efficiencies and uncertainties for relevant combinations (€2000)

Combination	Emission	Abatement efficiency	Quality	CI
Code	Factor for NMVOC [kg/t ethylene + propylene]	%		%
01 00 00	3.40		2-3	100
01 01 00	1.87	45	2-3	100
01 02 00	1.65	51.5	2-3	100
01 03 00	1.56	54.1	2-3	100
01 04 00	1.52	55.3	2-3	100

Combination Code	Investment	Fixed operating cost	Operating costs	Recovery of products	Quality of cost data	CI
	[€]	[€y]	[∉ y]	[€ y]		%
01 00 00		No fixed				
01 01 00	469 860	operating	67 970	229 450	2-3	100
01 02 00	694 240	cost taken	99 580	262 430	2-3	100
01 03 00	942 140	into	133 380	276 090	2-3	100
01 04 00	2 181 650	account	286 280	282 350	2-3	100

The table 5.3.2 presents costs expressed in €t VOC abated

Table 5.3.2 :	Costs	expressed	in €t	VOC	abated
---------------	-------	-----------	-------	-----	--------

Combination Code	Emission Factor for NMVOC kg/t [ethylene +	Annual total cost ∉t VOC non	Additional costs of each measure compared to the	Annual total cost per unit of activity
	propylene]	emitted	preceeding one ∉ t NMVOC	∉t [ethylene + propylene]
01 00 00	3.40	0	0	
01 01 00	1.87	-90	0	-0.138
01 02 00	1.65	-59	156.5	-0.103
01 03 00	1.56	-19	752.8	-0.035
01 04 00	1.52	193	9630.4	+0.360

6 Data to be provided by national experts for the completion of the data basis for their country

The following tasks are required from experts:

6.1 Validation work

The national expert is invited to comment the methodology defined by the secretariat.

- Validation of the default investments provided,
- Validation of the method of derivation of operating costs,
- Or
- Provide other costs for the same combination of techniques and justify them.

6.2 Provision of specific data

Tables to be filled in by national experts

• Determination of country specific data to calculate variable costs (Specific values for energy, man power... are valid for all NMVOC sectors and have to be entered in the tool only once)

Table 6.2.1: Country specific data

Parameters	Default data used for calculating costs	Country specific data
Naphtha [€t]	200	
Wages [€h]	25.9	

• Total activity level in accordance with units used in the document: t of ethylene + t propylene (produced by steam cracking) produced. Table 6.2.2 must be completed. Some default values for the confidence interval are given. A Party can use them if no data is available. The methodology used in Rains for estimating the future activity level will be described in the methodology. It can be used or information can be obtained from the industry.

RIC	2000	CI%	2005	CI%	2010	CI%	2015	CI%	2020	CI%
01										
Default values		10		20		50		100		100
proposed for CI										

 Table 6.2.2: Activity levels on reference installations (t/y of ethylene + propylene)

For explanation on the confidence interval (Refer to the methodology chapter).

• Respective percentage of combinations of reduction measures in 2000 as well as if possible, the percentage of use in 2005, 2010, 2015 and 2020 due to the NMVOC directive or national regulations and applicability according to the definition used in the RAINS model.

Table 6.2.3: Application rate and applicability factor for each combination of reduction measures

Reduc measu comb RIC (ction ure ination)1	for	Percen tage of use in 2000 %	Percen tage of use in 2005 %	Applic ability factor 2005 %	Percen tage of use in 2010 %	Applic ability factor 2010 %	Percen tage of use in 2015 %	Applic ability factor 2015 %	Percen tage of use in 2020 %	Applic ability factor 2020 %
RIC	РМС	SMC									
01	00	00									
De prop applie	efault val posed for cability f	lue r the factor			100		100		100		100
01	01	00									
De proj applio	efault val posed for cability f	lue r the factor			100		100		100		100
01	02	00									
De proj applie	efault val posed for cability f	lue r the factor			100		100		100		100
01	03	00									
De proj applie	efault val posed for cability f	lue r the factor			100		100		100		100
01	04	00									
De proj applie	efault val posed for cability f	lue r the factor			100		100		100		100
	Total		100	100		100		100		100	

The total of percentages of each combination or reduction technique must be 100 since the three combinations are assumed to represent the different situations in this activity.

The percentage of use of the different techniques depends on the Party's regulation. According to cases, combination 00 00 could be forbidden.

In the tool the absolute terms are directly entered (% for a given combination multiplied by the total activity)

7 Explanatory notes

7.1 Reference installation definition

The French Chemical Industry Federation UIC has carried out a study in order to supply the EGTEI work with data on emissions of steam cracking units. The reference installation presented in chapter 4.1 has been defined from data collected on different steam crackers in France and in Belgium [5]. The reference installation definition has also been discussed with CEFIC during the meeting of 13/03/03 held in Paris [6].

Only fugitive emissions from the production unit, channelled emissions and emissions at the flare are relevant in this context. Emissions from storages are not taken into account in this document

Elevated flares are considered to have an efficiency of 99,5 %. It can be assumed that everywhere in Europe vents are ducted to the flare with such an efficiency [5], [6].

Channelled emissions represent about 100 t NMVOC/year and cannot be easily reduced. No additional reduction of emissions option is available, when the best efficiency of vent collection towards the flare has been already implemented. It is considered that this situation is valid in Western Europe as well in Eastern Europe.

Consequently, the reference installation includes the presence of an elevated flare with an efficiency of 99,5% and vent collection for hydrocarbon recycling or hydrocarbon uses in downstream unit for limiting channelled emissions at minimum.

7.2 Definition of primary measures, derivation of emission factors

Fugitive emissions can be reduced through a Leak Detection And Repair programme (LDAR). To precise the definitions written in chapter 5.1 and to explain the cost results, it is assumed the following hypothesis :

Definition of what constitutes a leak: Table 5.1.1 presents concentration thresholds for determination of leak categories taken into account for each primary measure. Leak classification is made from comparison between measured VOC concentration in the vicinity of leaking point and threshold values.

Inventory of equipment: A database is established. Components are classified in term of type, service and process conditions. For calculating emission factors and costs per point, only two types of equipment are taken into account for simplification reason: valves and flanges.

Non accessible leaking points: To estimate the NMVOC emission from the non accessible points, it has been considered the same average emission factor by equipment family (flanges or valves) reported to the 10 000 considered points (40 000 accessible points for 50 000 points). Obviously, no reduction impact is taken into account for these points whatever the Primary Measures chosen.

Efficiency of tightening: The efficiency of tightening is considered to be 50 % of emission reduction for leaks $> 5\ 000\ \text{ppm}\ (\text{PMC}\ 01)\ \text{or} > 1\ 000\ \text{ppm}\ (\text{PMC}\ 02\ -\ \text{PMC}\ 03\ -\ \text{PMC}\ 04)$. This efficiency is only valid for the first operation when no actions has been achieved. The efficiency of the following tightening operations is lower and enables to maintain the emissions (Figure 7.2.1).

Efficiency of basic maintenance: The efficiency of basic maintenance is considered to be 80 % of emission reduction for leaks > 100 000 ppm (flanges + valves in PMC 01) or > 10 000 ppm (flanges + valves in PMC 02 - flanges in PMC 04) or > 5 000 ppm (flanges + valves in PMC 03). This efficiency is only valid for the first operation when no actions has been achieved. The efficiency of the following operations is lower and enables to maintain the emissions (Figure 7.2.1).

Efficiency of heavy maintenance: For PMC 04, the heavy intervention considered consists in replacing 100 % of valves with leak $> 10\ 000$ ppm with un-leaking valves. It has been assumed that leak higher than 100 000 ppm will appear again after that change but their number is reduced by the percentage of valve replaced.

Control is achieved on points that were detected leaking and tightening is carried out if necessary.

It is also assumed that the probability of emergence of new leaks is constant over time for each leak category so the average emission per point will increase linearly with time. (It is interesting to know that according to experience leaks appear in random manner). It is also assumed that if no action is taken after a maintenance campaign, the average emission value will reach the reference installation value after 10 years.

The probability of identifying medium or large leaks has been estimated on the basis of measurements made on several installations in France and Belgium [5] as well as specific emission reductions resulting from tightening or basic maintenance completed by expert judgement. The probability to meet leaks of each category is reduced after the first operation as the general standard of the installation is improved.

The efficiency of operations carried out with PMC 01, 02, 03 and 04 is presented in tables 7.2.1 to 7.2.4 for valves and in tables 7.2.5 and 7.2.8 for flanges.

References : Efficiencies are derived from the data collected by UIC [5]. UIC has provided data for the following ranges of leaks : 0-5000 ppm 5000-100 000 ppm > 100 000 ppm

For calculation CITEPA ,in consultation with ADEME, has taken into account the following ranges : 0-1000 ppm 1000-5000ppm 5000-10 000 ppm 10 000-100 000 ppm > 100 000 ppm

Figure 7.2.1 : Trends in emissions from accessible valves after tightening and basic maintenance from a situation where no action had been taken

It can be noticed that the first operation of tightening and basic maintenance on the leaking point (valves in steam cracking units) allows to reduce its emissions from 80 to about 25 kg/year. The operations of tightening and basic maintenance achieved after this first operation allow to maintain the emissions.

Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000to100000	> 100000	
Levels of leaks		50	2500	7020	23000	pegged value	
Emissions of VOC according to SOCMI equations							
Light liquid valves	kg/hr/pt	0.00014	0.00327	0.00745	0.01919	0.15	
Light liquid pumps	kg/hr/pt	0.00048	0.01199	0.02806	0.07461	0.62	
Average valves+pumps	kg/hr/pt	0.00031	0.00763	0.01776	0.04690	0.39	
Number of hours of work	8600	h/year					
Light liquid valves	kg/year/pt	1.2	28.2	64.1	165.1	1290.0	
Light liquid pumps	kg/year/pt	4.1	103.1	241.3	641.7	5332.0	
Average valves + pumps	kg/year/pt	2.0	46.9	108.4	284.2	2300.5	
Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000to100000	> 100000	Total
Percentage of leak according to the ranges of leaks	%	72.00%	10.00%	10.00%	6.00%	2.00%	100%
Average emissions	kg/year/pt	1.4	4.7	10.8	17.1	46.0	80.0
First operation - tightening of leak > 5000 ppm**							
Percentage of leak according to the ranges of leaks	%	81.00%	10.00%	5.00%	3.00%	1.00%	100%
Average emissions	kg/year/pt	1.6	4.7	5.4	8.5	23.0	43.2
Basic maintenance on valves with leaks > 100 000 p	opm						
Percentage of leak according to the ranges of leaks	%	81.80%	10.00%	5.00%	3.00%	0.20%	100%
Average emissions	kg/year/pt	1.6	4.7	5.4	8.5	4.6	24.8
Emissions after 5 years is nothing has been done*							
Percentage of leak according to the ranges of leaks	%	76.30%	10.60%	7.50%	4.50%	1.10%	100%
Average emissions	kg/year/pt	1.5	5.0	8.1	12.8	25.3	52.7
After 5 years when tightening is operated							
Percentage of leak according to the ranges of leaks	%	80.67%	10.60%	5.00%	3.00%	0.73%	100.%
Average emissions	kg/year/pt	1.6	5.0	5.4	8.5	16.9	37.4
Average on the five year period							
Percentage of leak according to the ranges of leaks	%	80.14%	10.30%	5.63%	3.38%	0.56%	100%
Average emissions	kg/year/pt	1.6	4.8	6.1	9.6	12.8	34.9

Table 7.2.1: Accessible valves - Hypothesis taken into account for estimating emissions of primary measure 01.

*In 10 years, it is assumed that the proportions of leaks reach the initial level.

** the efficiency of tightening is assumed to be the same for valves with leak of 5000 to 100 000 ppm (50%). *** See figure 7.2.2 for explanations on the average value on the period.

Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	
Levels of leaks		50	2500	7020	23000	pegged value	
Emissions of VOC according to SOCMI equations							
Light liquid valves	kg/hr/pt	0.00014	0.00327	0.00745	0.01919	0.15	
Light liquid pumps	kg/hr/pt	0.00048	0.01199	0.02806	0.07461	0.62	
Average valves+pumps	kg/hr/pt	0.00031	0.00763	0.01776	0.04690	0.39	
Number of hours of work	8600	h/year					
Light liquid valves	kg/year/pt	1.2	28.2	64.1	165.1	1290.0	
Light liquid pumps	kg/year/pt	4.1	103.1	241.3	641.7	5332.0	
Average valves+pumps	kg/year/pt	2.0	46.9	108.4	284.2	2300.5	
							_
Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	Total
Percentage of leak according to the ranges of leaks	%	72.00%	10.00%	10.00%	6.00%	2.00%	100%
Average emissions	kg/year/pt	1.4	4.7	10.8	17.1	46.0	80.0
First operation - tightening of leak > 1000 ppm**							
Percentage of leak according to the ranges of leaks	%	86.00%	5.00%	5.00%	3.00%	1.00%	100%
Average emissions	kg/year/pt	1.7	2.3	5.4	8.5	23.0	41.0
Basic maintenance on valves with leaks > 10 000	ppm						
Percentage of leak according to the ranges of leaks	%	89.20%	5.00%	5.00%	0.60%	0.20%	100%
Average emissions	kg/year/pt	1.7	2.3	5.4	1.7	4.6	15.8
Emissions after 5 years is nothing has been done*							
Percentage of leak according to the ranges of leaks	%	80.60%	7.50%	7.50%	3.30%	1.10%	100%
Average emissions	kg/year/pt	1.6	3.5	8.1	9.4	25.3	47.9
After 5 years when tightening is operated							
Percentage of leak according to the ranges of leaks	%	87.07%	5.00%	5.00%	2.20%	0.73%	100%
Average emissions	kg/year/pt	1.7	2.3	5.4	6.3	16.9	32.6
Average on the five year period***							
Percentage of leak according to the ranges of leaks	%	86.52%	5.63%	5.63%	1.68%	0.56%	100%
Average emissions	kg/year/pt	1.7	2.6	6.1	4.8	12.8	28.0

Table 7.2.2: Accessible valves - Hypothesis taken into account for estimating emissions of primary measure 02.

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for valves with leak of 1000 to 100 000 ppm (50%).

*** See figure 7.2.3 for explanations on the average value on the period.

Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000 to	> 100000]
Levels of leaks		50	2500	7020	23000	pegged value	-
Emissions of VOC according to SOCMI equations						1.66	-
Light liquid valves	kg/hr/pt	0.00014	0.00327	0.00745	0.01919	0.15	-
Light liquid pumps	kg/hr/pt	0.00048	0.01199	0.02806	0.07461	0.62	
Average valves+pumps	kg/hr/pt	0.00031	0.00763	0.01776	0.04690	0.39	
Number of hours of work	8600	h/year					
Light liquid valves	kg/year/pt	1.2	28.2	64.1	165.1	1290.0	
Light liquid pumps	kg/year/pt	4.1	103.1	241.3	641.7	5332.0	
Average valves+pumps	kg/year/pt	2.0	46.9	108.4	284.2	2300.5	
Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	Total
Percentage of leak according to the ranges of leaks	%	72.00%	10.00%	10.00%	6.00%	2.00%	100%
Average emissions	kg/year/pt	1.4	4.7	10.8	17.1	46.0	80.00
First operation - tightening of leak > 1000 ppm**			-				_
Percentage of leak according to the ranges of leaks	%	86.00%	5.00%	5.00%	3.00%	1.00%	100%
Average emissions	kg/year/pt	1.7	2.3	5.4	8.5	23.0	41.0
Basic maintenance on valves with leaks > 5 000 p	pm						
Percentage of leak according to the ranges of leaks	%	93.20%	5.00%	1.00%	0.60%	0.20%	100%
Average emissions	kg/year/pt	1.8	2.3	1.1	1.7	4.6	11.6
Emissions after 5 years is nothing has been done*			-				_
Percentage of leak according to the ranges of leaks	%	82.60%	7.50%	5.50%	3.30%	1.10%	100%
Average emissions	kg/year/pt	1.6	3.5	6.0	9.4	25.3	45.8
After 5 years when tightening is operated							
Percentage of leak according to the ranges of leaks	%	88.40%	5.00%	3.67%	2.20%	0.73%	100%
Average emissions	kg/year/pt	1.7	2.3	4.0	6.3	16.9	31.2
Average on the five year period***							
Percentage of leak according to the ranges of leaks	%	89.35%	5.63%	2.79%	1.68%	0.56%	100%
Average emissions	kg/year/pt	1.8	2.6	3.0	4.8	12.8	25.0

Table 7.2.3: Accessible valves - Hypothesis taken into account for estimating emissions of primary measure 03.

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for valves with leak of 5000 to 100 000 ppm (50%).

*** See figure 7.2.4 for explanations on the average value on the period.

Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	٦
Levels of leaks		50	2500	7020	23000		
Emissions of VOC according to SOCMI equations							
Light liquid valves	kg/hr/pt	0.00014	0.00327	0.00745	0.01919	0.15	
Light liquid pumps	kg/hr/pt	0.00048	0.01199	0.02806	0.07461	0.62	
Average valves+pumps	kg/hr/pt	0.00031	0.00763	0.01776	0.04690	0.39	
Number of hours of work	8600	h/year					
Light liquid valves	kg/year/pt	1.2	28.2	64.1	165.1	1290.0	
Light liquid pumps	kg/year/pt	4.1	103.1	241.3	641.7	5332.0	
Average valves+pumps	kg/year/pt	2.0	46.9	108.4	284.2	2300.5	
Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	Т
Percentage of leaks according to the ranges of leaks	%	72.00%	10.00%	10.00%	6.00%	2.00%	1
Average emissions	kg/year/pt	1.4	4.7	10.8	17.1	46.0	Τ
First operation - tightening of leak > 1000 ppm**							
Percentage of leaks according to the ranges of leaks	%	86.00%	5.00%	5.00%	3.00%	1.00%	-

Table 7.2.4: Accessible valves - Hypothesis taken into account for estimating emissions of primary measure 04.

Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	Total
Percentage of leaks according to the ranges of leaks	%	72.00%	10.00%	10.00%	6.00%	2.00%	100.00%
Average emissions	kg/year/pt	1.4	4.7	10.8	17.1	46.0	80.00
First operation - tightening of leak > 1000 ppm**							
Percentage of leaks according to the ranges of leaks	%	86.00%	5.00%	5.00%	3.00%	1.00%	100.00%
Average emissions	kg/year/pt	1.7	2.3	5.4	8.5	23.0	41.0
Changes of valves with leaks > 10 000 ppm							
Percentage of leaks according to the ranges of leaks	%	90.00%	5.00%	5.00%	0.00%	0.00%	100.00%
Average emissions	kg/year/pt	1.8	2.3	5.4	0.0	0.0	9.5
Emissions after 5 years is nothing has been done*							
Percentage of leaks according to the ranges of leaks	%	81.16%	7.50%	7.50%	2.88%	0.96%	100.00%
Average emissions	kg/year/pt	1.6	3.5	8.1	8.2	22.1	43.5
After 5 years when tightening is operated							
Percentage of leaks according to the ranges of leaks	%	87.44%	5.00%	5.00%	1.92%	0.64%	100.00%
Average emissions	kg/year/pt	1.7	2.3	5.4	5.5	14.7	29.7
Average on the five year period***							
Percentage of leaks according to the ranges of leaks	%	87.15%	5.63%	5.63%	1.20%	0.40%	100.00%
Average emissions	kg/year/pt	1.7	2.6	6.1	3.4	9.2	23.1

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for valves with leak of 1000 to 100 000 ppm (50%). *** See figure 7.2.5 for explanations on the average value on the period.

Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	
Levels of leaks		10	2000	7500	34000	pegged value	
Emissions of VOC according to SOCMI equations							
Connectors	kg/hr/pt	0.00002	0.00255	0.00820	0.03124	0.22	
Number of hours of work	8600	h/year					
Connectors	kg/year/pt	0.2	21.9	70.5	268.6	1892.0	
Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	Total
Percentage of leak according to the ranges of leaks	%	92.00%	4.00%	2.00%	1.25%	0.75%	100%
Average emissions	kg/year/pt	0.2	0.9	1.4	3.4	14.2	20.0
First operation - tightening of leak > 5000 ppm**							
Percentage of leak according to the ranges of leaks	%	93.92%	4.08%	1.00%	0.63%	0.38%	100%
Average emissions	kg/year/pt	0.2	0.9	0.7	1.7	7.1	10.6
Basic maintenance on flanges with leaks > 100 00	0 ppm						
Percentage of leak according to the ranges of leaks	%	94.20%	4.10%	1.00%	0.63%	0.08%	100%
Average emissions	kg/year/pt	0.2	0.9	0.7	1.7	1.4	4.9
Emissions after 5 years is nothing has been done*							
Percentage of leak according to the ranges of leaks	%	93.10%	4.05%	1.50%	0.94%	0.41%	100%
Average emissions	kg/year/pt	0.2	0.9	1.1	2.5	7.8	12.5
After 5 years when tightening is operated							
Percentage of leak according to the ranges of leaks	%	94.00%	4.10%	1.00%	0.63%	0.28%	100%
Average emissions	kg/year/pt	0.2	0.9	0.7	1.7	5.2	8.7
Average on the five year period***							
Percentage of leak according to the ranges of leaks	%	93.88%	4.08%	1.13%	0.70%	0.21%	100%
Average emissions	kg/year/pt	0.2	0.9	0.8	1.9	4.0	7.7

Table 7.2.5: Accessible flanges - Hypothesis taken into account for estimating emissions of primary measure 01.

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for flanges with leak of 5000 to 100 000 ppm (50%). *** See figure 7.2.6 for explanations on the average value on the period.

Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	
Levels of leaks		10	2000	7500	34000	pegged value	
Emissions of VOC according to SOCMI equations							
Connectors	kg/hr/pt	0.00002	0.00255	0.00820	0.03124	0.22	
Number of hours of work	8600	h/year					
Connectors	kg/year/pt	0.2	21.9	70.5	268.6	1892.0	
	· · ·		·	•			-
Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	Total
Percentage of leak according to the ranges of leaks	%	92.00%	4.00%	2.00%	1.25%	0.75%	100%
Average emissions	kg/year/pt	0.2	0.9	1.4	3.4	14.2	20.0
First operation - tightening of leak > 1000 ppm**							
Percentage of leak according to the ranges of leaks	%	96.00%	2.00%	1.00%	0.63%	0.38%	100%
Average emissions	kg/year/pt	0.2	0.4	0.7	1.7	7.1	10.1
Basic maintenance on flanges with leaks > 10 000) ppm						
Percentage of leak according to the ranges of leaks	%	96.80%	2.00%	1.00%	0.13%	0.08%	100%
Average emissions	kg/year/pt	0.2	0.4	0.7	0.3	1.4	3.1
Emissions after 5 years is nothing has been done*	:						
Percentage of leak according to the ranges of leaks	%	94.40%	3.00%	1.50%	0.69%	0.41%	100%
Average emissions	kg/year/pt	0.2	0.7	1.1	1.8	7.8	11.6
After 5 years when tightening is operated							
Percentage of leak according to the ranges of leaks	%	96.27%	2.00%	1.00%	0.46%	0.28%	100%
Average emissions	kg/year/pt	0.2	0.4	0.7	1.2	5.2	7.8
Average on the five year period							
Percentage of leak according to the ranges of leaks	%	96.07%	2.25%	1.13%	0.35%	0.21%	100%
Average emissions	kg/year/pt	0.2	0.5	0.8	0.9	4.0	6.4

Table 7.2.6: Accessible flanges - Hypothesis taken into account for estimating emissions of primary measure 02.

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for flanges with leak of 5000 to 100 000 ppm (50%).

*** See figure 7.2.7 for explanations on the average value on the period.

Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000
Levels of leaks		10	2000	7500	34000	pegged value
Emissions of VOC according to SOCMI equations						
Connectors	kg/hr/pt	0.00002	0.00255	0.00820	0.03124	0.22
Number of hours of work	8600	h/year				
Connectors	kg/year/pt	0.2	21.9	70.5	268.6	1892.0

Table 7.2.7: Accessible flanges - Hypothesis taken into account for estimating emissions of primary measure 03.

Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	Total
Percentage of leak according to the ranges of leaks	%	92.00%	4.00%	2.00%	1.25%	0.75%	100%
Average emissions	kg/year/pt	0.2	0.9	1.4	3.4	14.2	20.0
First operation - tightening of leak > 1000 ppm							
Percentage of leak according to the ranges of leaks	%	96.00%	2.00%	1.00%	0.63%	0.38%	100%
Average emissions	kg/year/pt	0.2	0.4	0.7	1.7	7.1	10.1
Basic maintenance on flanges with leaks > 5 000 J	ppm						
Percentage of leak according to the ranges of leaks	%	97.60%	2.00%	0.20%	0.13%	0.08%	100%
Average emissions	kg/year/pt	0.2	0.4	0.1	0.3	1.4	2.5
Emissions after 5 years is nothing has been done							
Percentage of leak according to the ranges of leaks	%	94.80%	3.00%	1.10%	0.69%	0.41%	100%
Average emissions	kg/year/pt	0.2	0.7	0.8	1.8	7.8	11.3
After 5 years when tightening is operated							
Percentage of leak according to the ranges of leaks	%	96.53%	2.00%	0.73%	0.46%	0.28%	100%
Average emissions	kg/year/pt	0.2	0.4	0.5	1.2	5.2	7.6
Average on the five year period							
Percentage of leak according to the ranges of leaks	%	96.63%	2.25%	0.56%	0.35%	0.21%	100%
Average emissions	kg/year/pt	0.2	0.5	0.4	0.9	4.0	6.0

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for flanges with leak of 1000 to 100 000 ppm (50%).

*** See figure 7.2.8 or explanations on the average value on the period.

Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	
Levels of leaks		10	2000	7500	34000	pegged value	
Emissions of VOC according to SOCMI equations	•						1
Connectors	kg/hr/pt	0.00002	0.00255	0.00820	0.03124	0.22	1
Number of yours of work	8600	h/year					1
Connectors	kg/year/pt	0.2	21.9	70.5	268.6	1892.0	
Panges of leaks nom	T T	~1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	Total
Parcentage of leak according to the ranges of leaks	0/2	02.00%	1000 to 5000	2 00%	1 25%	0 75%	100
Average emissions	kg/year/pt	0.2	0.9	1.4	3.4	14.2	20.0
First operation - tightening of leak > 1000 ppm**	8,5						
Percentage of leak according to the ranges of leaks	%	96.00%	2.00%	1.00%	0.63%	0.38%	100.00%
Average emissions	kg/year/pt	0.2	0.4	0.7	1.7	7.1	10.1
Basic maintenance of flanges with leaks > 10 000	ppm						
Percentage of leak according to the ranges of leaks	%	96.80%	2.00%	1.00%	0.13%	0.08%	100.00%
Average emissions	kg/year/pt	0.2	0.4	0.7	0.3	1.4	3.1
Emissions after 5 years is nothing has been done*	:						
Percentage of leak according to the ranges of leaks	%	94.40%	3.00%	1.50%	0.69%	0.41%	100.00%
Average emissions	kg/year/pt	0.2	0.7	1.1	1.8	7.8	11.6
After 5 years when tightening is operated							
Percentage of leak according to the ranges of leaks	%	96.27%	2.00%	1.00%	0.46%	0.28%	100.00%
Average emissions	kg/year/pt	0.2	0.4	0.7	1.2	5.2	7.8
Average on the five year period***							
Percentage of leak according to the ranges of leaks	%	96.07%	2.25%	1.13%	0.35%	0.21%	100.00%
Average emissions	kg/year/pt	0.2	0.5	0.8	0.9	4.0	6.4

Table 7.2.8: Accessible flanges - Hypothesis taken into account for estimating emissions of primary measure 04.

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for flanges with leak of 1000 to 100 000 ppm (50%).

*** See figure 7.2.9 or explanations on the average value on the period.

Figure 7.2.2: Accessible valves - Calculations of average emissions for the period of 5 years - PMC 01.

Figure 7.2.4: Accessible valves - Calculations of average emissions for the period of 5 years - PMC 03.

Figure 7.2.6: Accessible flanges - Calculations of average emissions for the period of 5 years - PMC 01.

Figure 7.2.7: Accessible flanges - Calculations of average emissions for the period of 5 years - PMC 02.

Figure 7.2.8: Accessible flanges - Calculations of average emissions for the period of 5 years - PMC 03.

Figure 7.2.9: Accessible flanges - Calculations of average emissions for the period of 5 year - PMC 04.

Tables 7.2.9 to 7.2.12 present the calculations of emissions for the reference installation for primary measures 01 and 02.

	Valves	Valves Flanges		NMVOC emissions
			emissions	kg/t ethyl.+propyl.
	NMVOC t/year	NMVOC t/year	t NMVOC/y	
Elevated flare			30	0.04
Channelled emissions			20	0.03
Fugitive emissions on	5000*0.08=400	5000*0.02=100	500	0.67
inaccessible points				
Fugitive emissions with	20000*0.08=1600	20000*0.02=400	2000	2.67
PMC 00				
Fugitive emissions with	20000*0.0349=	20000*0.0077=	853	1.14
PMC 01	699	155		
Emissions avoided with	901	246	1147	1.53
PMC 01				
Total emissions with			2550	3.40
PMC 00			(30+20+500+2000)	
Total emissions with			1403	1.87
PMC 01			(30+20+500+853)	

Table 7.2.9: NMVOC emissions with primary measure 00 and primary measure 01

Table 7.2.10: NMVOC emissions with primary measure 00 and primary measure 02

	Valves	Flanges	Total	NMVOC emissions
			emissions	kg/t ethyl.+propyl.
	NMVOC t/year	NMVOC t/year	t NMVOC/y	
Elevated flare			30	0.04
Channelled emissions			20	0.03
Fugitive emissions on	5000*0.08=400	5000*0.02=100	500	0.67
inaccessible points				
Fugitive emissions with	20000*0.08=1600	20000*0.02=400	2000	2.67
PMC 00				
Fugitive emissions with	20000*0.028=	20000*0.0064=	688	0.92
PMC 02	561	128		
Emissions avoided with	1039	273	1312	1.75
PMC 02				
Total emissions with			2550	3.40
PMC 00			(30+20+500+2000)	
Total emissions with			1238	1.65
PMC 02			(30+20+500+688)	

	Valves	Flanges	Total	NMVOC emissions
			emissions	kg/t ethyl.+propyl.
	NMVOC t/year	NMVOC t/year	t NMVOC/y	
Elevated flare			30	0.04
Channelled emissions			20	0.03
Fugitive emissions on inaccessible points	5000*0.08=400	5000*0.02=100	500	0.67
Fugitive emissions with PMC 00	20000*0.08=1600	20000*0.02=400	2000	2.67
Fugitive emissions with	20000*0.025=	20000*0.0060=	620	0.83
PMC 03	500	120		
Emissions avoided with PMC 03	1100	280	1380	1.84
Total emissions with PMC 00			2550 (30+20+500+2000)	3.40
Total emissions with PMC 03			1170 (30+20+500+620)	1.56

Table 7.2.11: NMVOC emissions with primary measure 00 and primary measure 03

Table 7.2.12: NMVOC emissions with primary measure 00 and primary measure 04

	Valves	Flanges	Total	NMVOC emissions
			emissions	kg/t ethyl.+propyl.
	NMVOC t/year	NMVOC t/year	t NMVOC/y	
Elevated flare			30	0.04
Channelled emissions			20	0.03
Fugitive emissions on	5000*0.08=400	5000*0.02=100	500	0.67
inaccessible points				
Fugitive emissions with	20000*0.08=1600	20000*0.02=400	2000	2.67
PMC 00				
Fugitive emissions with	20000*0.0232=	20000*0.0064=	589	0.78
PMC 04	461	128		
Emissions avoided with	1139	273	1412	1.88
PMC 04				
Total emissions with			2550	3.40
PMC 00			(30+20+500+2000)	
Total emissions with			1139	1.52
PMC 04			(30+20+500+589)	

7.3 Derivation of costs

Cost for the database establishment : the first measurement (100 % of points), the first tightening and the first basic or heavy maintenance have been considered as **investment costs**, even if labour costs are mainly involved.

Annual operation cost is composed of the control of 20 % of points and the tightening of leaking points (leaking level depending of PMC) It includes also 20 % of the cost of basic or heavy maintenance, carried out on a five year basis during shutdown.

	Composition of costs	Labour demand per point h/pt	Cost for France (labour cost 24.3 €/h)
Data base	50 % labour cost	0.04	1.0 €pt
	50 % material	-	1.0 €pt
Control by sniffing	100 % labour cost	0.2	5.0 €pt
Tightening including	100 % labour cost	0.8	20.0 €pt
checking control			
Basic maintenance	50 % labour cost	4.1	100 €pt
	50 % material	-	100 €pt
Heavy maintenance			2 000 €pt

Costs for France are as follows (according to data collected by UIC [5])

Default costs taken into account in this documents are as follows :

	Composition of costs	Labour demand	Cost per default
		per point	(labour cost
		h/pt	25.9 €⁄h)
Data base	50 % labour cost	0.04	1.1 €pt
	50 % material	-	1.0 €pt
Control by sniffing	100 % labour cost	0.2	5.3 €pt
Tightening including	100 % labour cost	0.8	21.3 €pt
checking control			_
Basic maintenance	50 % labour cost	4.1	106.6 €pt
	50 % material	-	100 €pt
Heavy maintenance			2 066 €pt

Table 7.3.1 to 7.3.4 present the total costs determined respectively for PMC 01, PMC 02, PMC 03 and PMC 04 $\,$

 Table 7.3.1 : Total default costs determined for primary measure 01.

		Valves			Flanges			Total
		Material cost	Labour cost	Total cost	Material cost	Labour cost	Total cost	
Investments - Establishment of a first L	DAR program							
Investment for the data base	€	20000	21317	41317	20000	21317	41317	82634
First monitoring of all points	€	0	106584	106584	0	106584	106584	213169
Tightening on leaking points > 5000	€operation							
ppm		0	76741	76741	0	17053	17053	93794
Basic maintenance during shutdown on	€basic							
leaks > 100000 ppm	maintenance	20000	21317	41317	7500	7994	15494	56811
Second control: Monitoring on potential	€verification							
leaking points	monitoring	0	19185	19185	0	4263	4263	23449
Total investment	€	40000	245144	285144	27500	157212	184712	469856
Annualized costs (4%)	€year			35158			22775	57933
Annual costs between two scheduled sh	utdowns							
Yearly action on 20 % points and 0,2 b	asic maintenan	ce or heavy mai	ntenance taken	into account				
Monitoring of points	€year	0	21317	21317	0	21317	21317	42634
Tightening on leaking points > 5000	<i>A</i> waan							
ppm	Tyear	0	11170	11170	0	2430	2430	13600
Basic maintenance on leaking points >	flyoor							
100 000 ppm	Tytal	2933	3126	6060	1100	1172	2272	8332
Second control : monitoring of potential	flyoor							
leaking points	Tyear	0	2793	2793	0	608	608	3400
Total operation cost	€year	2933	38406	41339	1100	25527	26627	67966
Total annual cost*	€year			76497			49402	125899
Recovered VOC **	€year			180279			49170	229449

 Table 7.3.2 : Total default costs determined for primary measure 02.

			Valves		Flanges			Total
		Material cost	Labour cost	Total cost	Material cost	Labour cost	Total cost	
Investments - Establishment of a first L	DAR program							
Investment for the data base	€	20000	21317	41317	20000	21317	41317	82 634
First monitoring of all points	€	0	106584	106584	0	106584	106584	213 169
Tightening on leaking points > 1000	€operation							
ppm	Coperation	0	119374	119374	0	34107	34107	153 481
Basic maintenance during shutdown on	€basic							
leaks > 10 000 ppm	maintenance	80000	85267	165267	20000	21317	41317	206 584
Second control: Monitoring on potential	€verification							
leaking points	monitoring	0	29844	29844	0	8527	8527	38 370
Total investment	€	100000	362387	462387	40000	191852	231852	694 239
Annualized costs (4%)	€year			57012			28587	85 600
Annual costs between two scheduled sh	utdowns							
Yearly action on 20 % points and 0,2 ba	asic maintenan	ce or heavy mai	ntenance taken	into account				
Monitoring of points	€year	0	21317	21317	0	21317	21317	42 634
Tightening on leaking points > 1000	€vear							
ppm	ayear	0	16542	16542	0	4775	4775	21 317
Basic maintenance on leaking points >	€vear							
10 000 ppm	eyeu	11733	12506	24239	2933	3126	6060	30 299
Second control : monitoring of potential	€vear							
leaking points	eyear	0	4135	4135	0	1194	1194	5 329
Total operation cost	€year	11733	54500	66233	2933	30412	33345	99 579
Total annual cost*	€year			123246			61933	185 179
Recovered VOC**	€year			207870			54564	262 434

 Table 7.3.3 : Total costs determined for primary measure 03.

			Valves		Flanges			Total
		Material cost	Labour cost	Total cost	Material cost	Labour cost	Total cost	
Investments - Establishment of a first L	DAR program							
Investment for the data base	€	20000	21317	41317	20000	21317	41317	82634
First monitoring of all points	€	0	106584	106584	0	106584	106584	213169
Tightening on leaking points > 1000 ppm	€operation	0	119374	119374	0	34107	34107	153481
Basic maintenance during shutdown on leaks > 5000 ppm	€basic maintenance	180000	191852	371852	40000	42634	82634	454486
Second control: Monitoring on potential	€verification							
leaking points	monitoring	0	29844	29844	0	8527	8527	38370
Total investment	€	200000	468971	668971	60000	213169	273169	942140
Annualized costs (4%)	€year			82484			33682	116166
Annual costs between two scheduled sh	utdowns							
Yearly action on 20 % points and 0,2 ba	asic maintenanc	ce or heavy mainte	nance taken into	account	_			
Monitoring of points	€year	0	21317	21317	0	21317	21317	42634
Tightening on leaking points > 1000 ppm	€year	0	14837	14837	0	4434	4434	19270
Basic maintenance on leaking points > 5 000 ppm	€year	26400	28138	54538	5867	6253	12120	66658
Second control : monitoring of potential leaking points	€year	0	3709	3709	0	1108	1108	4818
Total operation cost	€year	26400	68001	94401	5867	33112	38979	133380
Total annual cost*	€year			176885			72661	249546
Recovered VOC **	€year			219935			56157	276092

		Valves			Flanges			Total
		Material cost	Labour cost	Total cost	Material cost	Labour cost	Total	
							cost	
Investments - Establishment of a first L	DAR program							
Investment for the data base	€	20000	21317	41317	20000	21317	41317	82634
First monitoring of all points	€	0	106584	106584	0	106584	106584	213169
Tightening on leaking points > 1000 ppm	€operation	0	119374	119374	0	34107	34107	153481
Basic maintenance during shutdown on	€basic							
flanges with leaks > 10000 ppm	maintenance	0	0	0	20000	21317	41317	41317
Heavy maintenance during shutdown on	€heavy							
valves with leaks > 10000 ppm	maintenance	800000	852675	1652675	0	0		1652675
Second control: Monitoring on potential	€verification							
leaking point	monitoring	0	29844	29844	0	8527	8527	38370
Total investment	€	820000	1129794	1949794	40000	191852	231852	2181646
Annualized costs (4%)	€year			240410			28587	268997
Annual costs between two scheduled sh	utdowns							
Yearly action on 20 % points and 0,2 ba	asic maintenanc	ce or heavy mai	ntenance taken	into account				
20 % of points each year	€year	0	21317	21317	0	21317	21317	42634
Tightening on leaking point > 1000 ppm	€year	0	16064	16064	0	4775	4775	20839
Basic maintenance on leaking flanges >	€year							
10 000 ppm		0	0	0	2933	3126	6060	6060
Heavy maintenance on leaking valves >	€year							
10 000 ppm		102400	109142	211542	0	0	0	211542
Monitoring on potential leaking point	€year	0	4016	4016	0	1194	1194	5210
Total operation cost	€year	102400	150540	252940	2933	30412	33345	286285
Total annual cost	€year			493349			61933	555282
Recovered VOC	€year			227791			54564	282354

Table 7.3.4 : Total costs determined for primary measure 04

•

Comments

Chapter to be completed with comments received from national experts

8

It has been noticed the size of the reference installation has been underestimated. The capacity of production of the reference installation is not 550 kt but 750 kt. In order to be totally coherent with the references installations of the document 9, the share of valves and flanges has been changed from 46/60 to 50/50. All changes have been operated in the different chapters concerned. The modifications give different emission factors and costs. The changes concern mainly : Page 12 : modification of figures of production, Page 13 : modification of the table,

Page 14 and 15 : some details

Page 17 : emission factors and costs modified,

Page 18 : emission factors and costs modified,

Table 7.2.9 to 7.2.12 modified,

Tables 7.3.1 to 7.3.4 modified.

Following re-lecture and work, some mistakes have been detected. Costs were derived from French costs (wages 24.3 €h). The default value (25.9) for wage is taken into account to present the costs in the new version.

Corrections made are as follows:

Point 3: no sanitary impact instead of sanitary impact

Table 4.1: 50/50 instead of 40/60

Table 5.3.1: Confidence interval 100 instead of 200

New investment and operation costs

Table 5.3.2: new costs for annual total costs per tonne NMVOC non emitted and addition of a nex column for costs per activity unit.

Table 6.2.1: 25.9 instead of 24.3

Page 41 additional explanations

Tables 7.3.1 to 7.3.4 modified

9 References for steam cracking chapter

- [1] MONZAIN M. (UIC) ; MONGENET F. (UIC) ; CASTRO F. (UIC): Meeting held in Paris on 21/08/02 with N. ALLEMAND and J. VINCENT from CITEPA aiming at defining the best approach for cost definition in the organic chemical sector. Minutes of the meeting.
- [2] KLIMONT Z. ; AMANN M. ; COFALA J. : Estimating costs for controlling emissions of NMVOC from stationary sources in Europe Report IR – 00- 51 IIASA – August 2000
- [3] IIASA web site for NMVOC emission documents : http://www.iiasa.ac.at/~rains/voc_review.html
- [4] IPPCB BREF large volume organic chemical industry February 2003
- [5] MONZAIN M. (UIC), LUYTEN P. (Atofina) and MARLIER G. (UIC): data collected in France for documenting the EGTEI work and the preparation and discussion of a project of regulation of fugitive emissions on steam crackers of the French ministry of environment.
- [6] MONZAIN M. (UIC); DE MOULIN J.M. (CEFIC); HARSHAM K. (CEFIC); MARLIER G. (UIC); SCOLES G. (Shell chemicals): Meeting held in Paris on 13/03/03 with N. ALLEMAND from CITEPA for the cost definition in steam cracking. Minutes of the meeting.
- [7] EPA
 Protocol for equipment leak
 Emissions estimates
 EPA 453-95-017 1995
- [8] CEN TC 264
 - TC 264 WI 17

Measurement of fugitive emission of vapours generating from equipment and piping leaks Paper not yet public 2003

 [9] Union of Chemical industries
 "Guide de mise en place d'un schema de maîtrise des emissions de COVNM des unités de production de la pétrochimie et des procédés associés".
 In preparation -

PVC suspension

This section concerns the PVC production.

Activity: production of PVC by the suspension process.

Part of SNAP 040508. NFR 3C The document has been prepared on the basis of information provided by an expert group from Solvay, Atofina, LVM and SPMP [1].

1 Data from the literature

Please refer to chapter 2 of the introduction for detail.

2 Short technology description

Suspension Polymerisation (Batch Process)

The suspension process for producing PVC resins is characterised by the formation of polymer in droplets of liquid vinyl chloride monomer (VCM) or other co-monomers suspended in water by agitation. Polymerisation starts by adding monomer-soluble initiators, then addition of suspension stabilisers and suspending agents minimises the coalescence of the grains.

Polyvinylchloride resin, unreacted VCM (in the water, in the headspace, and trapped in the resin) and water are the constituents remaining in the polymerisation reactor. Generally, this polymer slurry is stripped of unreacted VCM using steam and vacuum. This can be done in the reactor itself or in a separate vessel or column. The unreacted stripped VCM is purified, stored and recycled, and non-condensable gases are vented after treatment.

After stripping, the slurry of PVC containing very low amount of VCM is transferred to blend tanks which mix the batch with other batches to insure product uniformity. The mixed batches are then fed to a continuous centrifuging operation that separates the polymer from the water in the slurry. Both, mixing tanks and centrifuges are vented to the atmosphere. The centrifuge water is recycled back to the process or discharged to the plant's wastewater treatment system after stripping.

The wet cake from centrifuging is conveyed to a dryer for further removal of the remaining (usually 25 %) moisture. Drying time is generally short, but large volumes of air are released.

Emission Sources

The major emissions to air are vinyl chloride and only traces of other organics.

During the PVC suspension production, process emission sources include:

- VCM unloading and storage,
- opening of equipment for cleaning and maintenance,
- process vents, such as blending tank vents, monomer recovery system vents, and dryer exhaust vents,
- equipment leaks from valves, flanges, pumps, compressors, relief devices, sample connections, and open-ended lines,
- other diffuse sources such as gasholders and wastewater.

Most of the emission factors from the literature are obsolete, due to constant improvement of s-PVC technology and industrial practices. Common values in Western Europe for process emissions are below 100 g/Mg product after 2000 (ECVM Industry Charter for the Production of VCM and PVC – 2000). Most of VOC is VCM.

Accidental emissions by pressure relief device discharges are not included. They are reported to the local authorities.

EU regulation

The chemical industry is concerned by Directive IPPC. No emission limits are implemented.

3

4 **Definition of reference installations**

The reference unit is a 250 kt/yr plant, at the 1970 stage, consisting of a very basic suspension process, without any stripping or recovery of VOC.

Table 4.1: Definition of the reference installation

Reference Installation Code	Description
01	250 kt/yr plant, life time : 10 years Plant factor [h/year] : 8000

5	Emission abatement techniques and costs

5.1 **Definitions of primary measures**

Technical Aspects

The losses due to leakage can be limited by use of a certain type of gaskets, flanges, pumps packing and seals, and by use of continuous VCM emissions monitoring.

Such modifications have been introduced by the Western Europe s-PVC industry since 1974.

Economic Aspects

No information on costs for primary measures is available for the considered processes.

5.2 **Definitions of secondary measures**

Technical Aspects

- Stripping the residual VCM and vent gas treatment which are the most consistent measures in • terms of COV reduction.
- Diffuse and fugitive emission treatment program according to ECVM methodologies (LDAR-٠ Leak Detection And Repair),
- Optimisation of different emission treatments, most of them in combination, depending the specific process or local conditions (stripping, vent gas, closed lid reactor, closed sampling,...)

Table 5.2.1 : Secondary measures definition

Secondary measures	Description
01 00 00	None
01 00 01	Stripping and vent gas treatment
01 00 02	01 00 01 + Diffuse and fugitive emissions treatment program according to
	ECVM methodologies
01 00 03	01 00 01 + Optimised treatments (stripping, vent gas, closed lid reactor,
	closed sampling,)
01 00 04	01 00 03 + Diffuse and fugitive emissions treatment program according to
	ECVM methodologies

Many "open reactors" have already been replaced by "closed reactors"; but this closed reactors technology cannot be generalised because it does not allow to manufacture some grades of PVC.

"Open reactor" means reactor open after each polymerisation batch for examination and cleaning if necessary; in "closed reactor", the process, depending the PVC grade manufactured, has been automated, avoiding to open the reactor, and allowing a cleaning after 30 operations or more. In both cases, the reactor is purged before opening and corresponding VCM is recycled.

5.3 Emission factors, costs data and uncertainties of the different combinations

Table 5.3.1 : Emission factors, investments and operating costs, abatement efficiency and uncertainties

Combination code	Emission Factor	Abatement	CI	Quality
	for VCM	efficiency	%	
	[g/tPVC]	%		
01 00 00	30000	0	10	4
01 00 01	96	99.68	100	4
01 00 02	83	99.72	110	4
01 00 03	53	99.82	90	4
01 00 04	40	99.87	100	4

Combination	Investment	CI	Q	Fixed	CI	Q	Variable	CI	Q
Code	[kEUR]	%		Operating	%		Operating	%	
				Cost			Cost		
				[kEUR/a]			[kEUR/a]		
01 00 00	0			0			0		
01 00 01	7700	40	3	200	40	3	1200	100	3
01 00 02	7900	40	3	400	30	3	1200	100	3
01 00 03	42100	20	3	1200	30	3	1300	90	3
01 00 04	42300	20	3	1300	20	3	1300	90	3

Only the techniques specifically identified in chapter 5 (table Secondary measures/Description) have been considered in the above costs. Costs for other measures taken by the PVC industry to reduce emissions since the seventies have not been included (e.g. equipment upgrades, fixed monitoring systems for measuring VCM concentrations in the atmosphere, process improvements, special procedures, etc).

6 Data to be provided by national experts for the completion of the data basis for their country

The following tasks are required from experts:

6.1 Validation work

The national expert is invited to comment the methodology defined by the secretariat.

- Validation of the default investments provided,
- Validation of the method of derivation of operating costs,
- Or
- Provide other costs for the same combination of techniques and justify them.

6.2 Provision of specific data

Tables to be filled in by national experts

• Determination of country specific data to calculate variable costs (Specific values for energy, man power... are valid for all NMVOC sectors and have to be entered in the tool only once)

• Total activity level. Table 6.2.2 must be completed. Some default values for the confidence interval are given. A Party can use them if no data is available. The methodology used in Rains for estimating the future activity level will be described in the methodology. It can be used or information can be obtained from the industry.

RIC	2000	CI%	2005	CI%	2010	CI%	2015	CI%	2020	CI%
01										
Default values		10		20		50		100		100

 Table 6.2.1: Activity levels on reference installations (t/y of PVC)

For explanation on the confidence interval (Refer to the methodology chapter).

• Respective percentage of combinations of reduction measures in 2000 as well as if possible, the percentage of use in 2005, 2010, 2015 and 2020 due to the NMVOC directive or national regulations and applicability according to the definition used in the RAINS model.

Table 6.2.2: Application rate and applicability factor for each combination of reduction measures

Redu measu comb RIC (ction ure ination 01	for	Percen tage of use in 2000 %	Percen tage of use in 2005 %	Applic ability factor 2005 %	Percen tage of use in 2010 %	Applic ability factor 2010 %	Percen tage of use in 2015 %	Applic ability factor 2015 %	Percen tage of use in 2020 %	Applic ability factor 2020 %
RIC	PMC	SMC									
01	00	00									
Default value proposed for the applicability factor				100		100		100		100	
01	00	01									

Default value proposed for the applicability factor				100		100		100		100	
01	00	02									
De proj appli	efault val posed for cability f	lue r the factor			100		100		100		100
01	00	03									
Default value proposed for the applicability factor		lue r the factor			100		100		100		100
01	00	04									
Default value proposed for the applicability factor				100		100		100		100	
	Total		100	100		100		100		100	

The total of percentages of each combination or reduction technique must be 100 since the three combinations are assumed to represent the different situations in this activity.

The percentage of use of the different techniques depends on the Party's regulation. According to cases, combination 00 00 could be forbidden.

In the tool the absolute terms are directly entered (% for a given combination multiplied by the total activity)

On average in Europe, application rates are or will be as follows [1]:

Combination	1970	1990	2000	2010	
code					
01 00 00	100	3			
01 00 01		50	40		
01 00 02				40	
01 00 03		47	60		
01 00 04				60	

Application rates in the above table are given for RAINS simulation purpose. They should be considered as indicative only of the EC PVC industry evolution perspective [1]. In eastern countries the situation could be different.

Explanatory notes

Investment costs and operational costs are derived from the experience of the industry.

7

8 Comments

Just a comment from industry indicating a mistake in the text. "After opening and corresponding VCM" is replaced by "before opening and corresponding VCM".

9 References for PVC production

[1] Expert group from PVC manufacturers : TRIOPON S. (LVM); LIEGEOIS R. (Solvay); LOUIS H. (Atofina); BINDELLE J.P. (Solvay), DE CHAMPS F. (SPMP).

Organic chemical industry except steam cracking, PVC production and active ingredient production

This document concerns a process of the organic chemistry for representing productions of chemicals except those from steam crackers, the PVC production and the speciality chemical industry.

Down stream units (following the steam cracker), (all processes of the organic chemistry except steam crackers, the PVC suspension process and the speciality chemical industry).

<u>Activity:</u> due to the large number of sources covered, the activity level is directly defined as **VOC emissions** declared by Parties for the sources covered by this sector.

This sector is assumed to cover the following SNAP sources:

- SNAP 04 05 03/04/05 production of 1,2 dichloroethane/vinyl chloride,
- SNAP 04 05 06/07 production of polyethylene, high and low density,
- SNAP 04 05 09 to 04 05 27 from production of polypropylene to other chemical compounds except 040522 storage and handling of chemical products (According to the cases, the VOC emissions from non pharmaceutical active ingredients could be considered under this SNAP code. In that case emissions have not to be taken into account).

NFR 3C

The document has been prepared in cooperation with the French Chemical Union (UIC) and CEFIC, and expert from ADEME [5], [6].

Data from the literature

Please refer to chapter 2 of introduction for detail.

1

2 Short technology description

A typical process cannot be described due to the large number of processes and chemical products produced.

By analogy with the reference installation used for the steam cracking, it has been considered :

VOC emissions at the flare:

No presence of flare considered.

VOC channelled emissions (other than the flare):

During normal operation, channelled VOC emissions are recycled into the process, used as a fuel or routed to associated processes on an integrated site. Channelled emissions are considered very low.

Fugitive VOC emissions:

Chemical units have high numbers of components with potential leaking points of which could potentially arise fugitive emissions. Fugitive emissions arise from: valve glands, pipe flanges, open ended lines, pressure relief valves, other piping components, pumps, compressors seals...

Other sources of VOC emissions such as storages are considered in this document.

A chemical unit is stopped at regular intervals (periodicity may range from 4 to 5 years) for controls and maintenance.

Tightening of leaking equipment is an essential operation of a Leak Detection And Repair **programme (LDAR).** It can be achieved on line with the process in operation (**tightening operation**), but suppression of most important leaks can only be achieved during planned shutdowns with isolation and degassing of the corresponding sector. Dismantling or exchange of the pieces of equipment is required.

EU regulation

The chemical industry is concerned by Directive IPPC. No emission limits are implemented.

3

4 **Definition of reference installations**

The reference installation has been defined on the same principles adopted for representing the steam cracker (refer to the document steam cracking if necessary) with data provided by the French Chemical Industry association [4] and CEFIC [5].

Channelled VOC emissions from the process can be assumed to be recycled at a maximum level into the process or used as a fuel or routed to associated processes. No flare system has to be considered in this unit.

This installation has about 12 000 potentially leaking points (valves, flanges, pumps, open ends...) of which 80 % are accessible. In the scope of this study, a simplified installation with 40 % valves and 60 % flanges is considered.

Reference Installation Code	Description
01	Chemical unit – Reference VOC emissions 230 t VOC.
	Channelled VOC emissions from the process assumed to be very low. Fugitive emissions: 12 000 potentially leaking points (valves, pumps, flanges, open ends); 9 600 accessible points. 40 % valves, 60 % flanges.

Table 4.1: Definition of the reference installation

These assumptions are derived from data collected by UIC at French level [5] and CEFIC at European level. The different VOC emission sources from different type of installations have been collected [5]. It has to be outline that the measurement techniques used in Europe to estimate fugitive emissions from steam cracking units and other processes of the chemical industry are not yet well defined.

Emissions depend on the methodology used. The EPA 21 method [7] is used some times. This method begins to be used in France.

There are discrepancies between emissions declared previously by industry and the emissions estimated with EPA 21 method. The EPA 21 presents several techniques for estimations. Each of these techniques gives different results **and this can have consequences on the cost effectiveness of the LDAR program.**

Fugitive emissions of the reference installation are defined with the use of correlation equations provided by US EPA for SOCMI (Synthetic Organic Chemicals Manufacturing Industry) [7]. From measurement in ppm of VOC around a leaking point, the correlations give a quantity of VOC emitted in kg/year. EPA has established the correlation (table 5.1.3). Specific correlations defined by industry especially are existing. Generally the use of specific correlations gives lower emissions than the use of general SOCMI equations provided by EPA.

The CEN [9] is presently working on the redaction of a standard for the determination of leaks of VOC from process equipment. The use of EPA correlations is recommended if user defined correlations are not available.

Emission abatement techniques and costs

5.1 Definitions of primary measures

5

As explained in chapters 2 and 4, potential reductions only exist on NMVOC fugitive emissions but not on stack emissions that are well controlled. Fugitive emissions can be reduced through a Leak Detection And Repair programme [7].

The technique for LDAR consists in measuring the concentration of VOC in the atmosphere around the potential leak, then selecting equipments leaking over a defined threshold value and finally operating a repair on those leaking items.

A LDAR programme is established according to the following principles:

- 5 The definition of what constitutes a leak and fixation of corresponding thresholds,
- 6 The fixation of the frequency of inspections,
- 7 The listing and identification of components included,
- 8 The procedures concerning repair of leaking components depending of the leak category.

Repair procedures related to leak category considered in primary measures are indicated in table 5.1.1.

4 LDAR programmes are considered for the estimation of costs in order to be coherent with measures defined for steam cracking units. They differ from the level of leak considered and type of maintenance carried out.

	Leaks < 1000	Leaks from	Leaks from	Leaks from	Leaks > 100000	
	ppm	1000 to 5000	5000 to 10000	10000 to 100000	ppm	
		ppm	ppm	ppm		
PMC 00			No action on leaks	1		
					Tightening after	
					detection and	
PMC 01	No action	No action	Tightening after	Tightening after	basic	
	No action	No action	detection	detection	maintenance	
					during sche-	
					duled shutdown	
		Tightening ofter	Tightoning offer	Tightening afte	er detection and	
PMC 02	No action	detection	detection	basic maintenance during		
		detection	detection	scheduled	shutdown	
PMC 03	No action	Tightening after	Tightening afte	er detection and bas	sic maintenance	
I WIC 03	No action	detection	duri	ng scheduled shutd	lown	
				Tightening afte	er detection and	
				basic mainte	nance during	
PMC 04	No action	Tightening after	Tightening after	scheduled shutd	lown for flanges	
	i to action	detection	detection	Tightening afte	er detection and	
				heavy mainte	enance during	
				scheduled shute	down for valves	

Table 5.1.1: Definition of leak and repair programme considered in primary measures 00 to 04

Refer to the definitions just after.

The following definitions have been considered:

Equipment tightening can be made with equipment **in operation** (except with remote control valves (eg tightening bolts to eliminate leaks from valves stems or flanges, installing tightening caps on open ends...).

Maintenance with dismantling equipment or exchange can only be implemented during plant shutdowns with circuits insulation and degassing. So, during plant shutdowns, two kinds of maintenance have been characterized:

Basic maintenance : maintenance on the equipment (flanges + valves) to remove some parts or to change the equipment with a new one of the same technology.

Heavy maintenance : complete change of the valves with valves of the higher grade standard, not leaking technology. Basic maintenance is maintained for the flanges.

It is considered that to **establish the LDAR program**, it is necessary to invest in a database with all potentially leaking points first measured (100 % of accessible points are considered and controlled). Then, the results of these first exhaustive measures campaign are analysed to initiate the repairing actions specific to each primary measures, including shutdown repairing. Then, each leak repaired is once again controlled to take in account the efficiency of the intervention.

For the following years, before next shutdown, the frequency of leak controls is estimated to 20 % of accessible points. Following the level of measured concentration, the leaking points (> 1 000 or 5 000 ppm depending of PMC) will be repaired by tightening on line.

At the next shutdown, the maintenance intervention (basic or heavy depending of PMC) will occur.

Primary Measure	Description
00	No LDAR programme
01	Establishment of the LDAR program
	Inventory of all components and establishment of a database.
	First survey of all potential leak points of the plant (100 % of accessible points are
	considered and controlled), analysis of the first results of the survey.
	Tightening for points $> 5\ 000\ ppm$
	Basic maintenance for 100 % points > 100 000 ppm during first shut down.
	Annual control between two shutdowns
	Intermediate campaign before shutdown: 20 % of accessible points are controlled each
	year (in five years all points are controlled).
	Tightening each year for 100 % controlled points > 5000 ppm.
	Next Shutdown.
	Basic maintenance for 100 % measured points (during the 5 years) > 100 000 ppm.
02	Establishment of the LDAR program
	Inventory of all components and establishment of a database.
	First survey of all potential leak points of the plant (100 % of accessible points are
	considered and controlled), analysis of the first results of the survey.
	Tightening for points > 1000 ppm.
	Basic maintenance for points > 10000 ppm during the first shut down.
	Annual control between two shutdowns
	Intermediate campaign before shutdown : 20% of accessible points are controlled each
	year (in five years all points are controlled).
	Fightening each year for 100 % controlled points > 1 000 ppm.
	Example 100 Normal Restriction $(during the 5 years) > 10,000 ppm$
03	Establishment of the LDAP program
05	Inventory of all components and establishment of a database
	First survey of all potential leak points of the plant (100 % of accessible points are
	considered and controlled), analysis of the first results of the survey.
	Tightening for points > 1000 ppm.
	Basic maintenance for 100 % points > 5000 ppm during the first shut down.
	Annual control between two shutdowns
	Intermediate campaign before shutdown : 20 % of accessible points are controlled each
	year (in five years all points are controlled).
	Tightening each year for 100 % measured points > 1000 ppm.
	Next Shutdown
	Basic maintenance for 100 % measured points (during the 5 years) > 5 000 ppm.
04	Establishment of the LDAR program
	Inventory of all components and establishment of a database.
	First survey of all potential leak points of the plant (100 % of accessible points are
	considered and controlled), analysis of the first results of the survey.
	Tightening for points > 1 000 ppm
	Basic maintenance for flanges points $>10\ 000\ \text{ppm}$ during the first shut down.
	Heavy maintenance for valves points > 10000 ppm during the first shut down.
	Annual control between two snutdowns
	intermediate campaign before shutdown: 20 % of accessible points are controlled each
	year (in five years an points are controlled). Tightoning each year for points $> 1,000$ ppm
	Next Shutdown
	Basic maintenance for 100 % measured (during the 5 years) $> 10,000$ nmm
	Heavy maintenance for 100 % measured (during the 5 years) > 10000 ppm.
	neary manifoldance for 100 /0 measured (during the 5 years) > 10 000 ppin.

Table 5.1.2:Primary measure definition

64

Correlation between ppm measurement and VOC emitted quantities :

The SOCMI correlations between screening values and emission rates are in the form [7]:

 $ER = A \cdot (SV)^{B}$ with ER = emission rate in kg/h/pt and SV the screening value (ppm).

These correlations are valid between 0 and 100 000 ppm. For screening value higher than 100 000 ppm a fixed or pegged value is used always given by EPA.

The value of A and B parameters for the different equipment are as follows [7]:

Table 5.1.3: value of parameters A and B and of the pegged values according to SOCMI correlations [7]

Source	Service	Α	В	Pegged value > 100 000 ppm kg/h
Valve	Gas	$1.87 \ 10^{-6}$	0.873	0.110
Valve	Light liquid	6.41 10 ⁻⁶	0.797	0.150
Pump seal	Light liquid	$1.90 \ 10^{-5}$	0.824	0.620
Connector	All	$3.05 \ 10^{-6}$	0.885	0.220

5.2 Secondary measures

No secondary taken into account.

5.3 Emission factors, cost data and uncertainties of the different combinations

Table 5.3.1: Emission factors, investments, operating costs, abatement efficiencies and uncertainties for relevant combinations (€2000)

Combination	Emission	Abatement efficiency	Quality	CI
Code	Factor for			
	NMVOC [t VOC/t VOC]	%		%
01 00 00	1		2	200
01 01 00	0,66	34	2	200
01 02 00	0,64	36	2	200
01 03 00	0,64	36	2	200
01 04 00	0,53	47	2	200

Combination Code	Investment	Fixed operating cost	Operating costs	Recovery of products	Quality of cost data	CI
	[€]	[€y]	[€ y]	[€ y]		%
01 00 00						
01 01 00	79 780	No fixed	11 580	31 360	2	100
01 02 00	85 300	operating	12 440	33 150	2	100
01 03 00	88 930	cost taken	12 990	33 360	2	100
01 04 00	157 870	into account	20 520	43 360	2	100

The table 5.3.2 presents costs expressed in €t VOC abated

Combination	Emission	Annual total cost	Quality	CI
Code	Factor for			
	NMVOC [t VOC/t VOC]	€ t VOC non emitted		%
01 00 00	1		2	100
01 01 00	0.66	-127		100
01 02 00	0.64	-123		100
01 03 00	0.64	-113		100
01 04 00	0.53	-31		100

Table 5.3.2 : costs expressed in €t VOC abated

6 Data to be provided by national experts for the completion of the data basis for their country

The following tasks are required from experts:

6.1 Validation work

The national expert is invited to comment the methodology defined by the secretariat.

- Validation of the default investments provided,
- Validation of the method of derivation of operating costs,
- Or
- Provide other costs for the same combination of techniques and justify them.

6.2 Provision of specific data

Tables to be filled in by national experts

• Determination of country specific data to calculate variable costs (Specific values for energy, man power... are valid for all NMVOC sectors and have to be entered in the tool only once)

Table 6.2.1: Country specific data

Parameters	Default data used for calculating costs	Country specific data
Organic compounds [€t VOC recovered]	400	
Wages [€h]	24.3	

• Total activity level in accordance with units used in the document: t of ethylene + t propylene (produced by steam cracking) produced. Table 6.2.2 must be completed. Some default values for the confidence interval are given. A Party can use them if no data is available. The methodology used in Rains for estimating the future activity level will be described in the methodology. It can be used or information can be obtained from the industry.

The level of activity is represented by the sum of emissions declared for the following SNAP sources covered:

SNAP 04 05 03/04/05 production of 1,2 dichloroethane/vinyl chloride,

- SNAP 04 05 06/07 production of polyethylene, high and low density,
- SNAP 04 05 09 to 04 05 27 from production of polypropylene to other chemical compounds except 040522 storage and handling of chemical products (According to the cases, the VOC emissions from non pharmaceutical active ingredients could be considered under this SNAP code. In that case emissions have not to be taken into account).

RIC	2000	CI%	2005	CI%	2010	CI%	2015	CI%	2020	CI%
01										
Default values proposed for CI		10		20		50		100		100

Table 6.2.2: Activity levels on reference installations (t VOC /y)

For explanation on the confidence interval (Refer to the methodology chapter).

• Respective percentage of combinations of reduction measures in 2000 as well as if possible, the percentage of use in 2005, 2010, 2015 and 2020 due to the NMVOC directive or national regulations and applicability according to the definition used in the RAINS model.

Table 6.2.3: Application rate and applicability factor for each combination of reduction measures

Reduce measure comb RIC (ction ure ination)1	ı for	Percen tage of use in 2000 %	Percen tage of use in 2005 %	Applic ability factor 2005 %	Percen tage of use in 2010 %	Applic ability factor 2010 %	Percen tage of use in 2015 %	Applic ability factor 2015 %	Percen tage of use in 2020 %	Applic ability factor 2020 %
RIC	PMC	SMC									
01	00	00									
De proj applie	efault val posed for cability f	lue r the factor			100		100		100		100
01	01	00									
De proj applie	efault val posed for cability f	lue r the factor			100		100		100		100
01	02	00									
De proj applie	efault val posed for cability f	lue r the factor			100		100		100		100
01	03	00									
De proj applie	efault val posed for cability f	lue r the factor			100		100		100		100
01	04	00									
De proj applie	efault val posed for cability f	lue r the factor			100		100		100		100
	Total		100	100		100		100		100	

The total of percentages of each combination or reduction technique must be 100 since the three combinations are assumed to represent the different situations in this activity.

The percentage of use of the different techniques depends on the Party's regulation. According to cases, combination 00 00 could be forbidden.

In the tool the absolute terms are directly entered (% for a given combination multiplied by the total activity)

7 Explanatory notes

67

7.1 Reference installation definition

The French Chemical Industry Federation UIC has carried out a study in order to supply the EGTEI work with data. A reference installation for steam cracking presented in the document on steam cracking has been defined.

On a similar basis, a reference installation for downstream chemistry has been defined but with less relevant data for defining it and mainly expert judgement.

Channelled emissions are considered negligible. No additional reduction of emissions option is available, when the best efficiency of vent collection towards the flare has been already implemented. It is considered that this situation is valid in Western Europe as well in Eastern Europe.

7.2 Definition of primary measures, derivation of emission factors

Fugitive emissions can be reduced through a Leak Detection And Repair programme (LDAR). To precise the definitions written in chapter 5.1 and to explain the cost results, it is assumed the following hypothesis :

Definition of what constitutes a leak: Table 5.1.1 presents concentration thresholds for determination of leak categories taken into account for each primary measure. Leak classification is made from comparison between measured VOC concentration in the vicinity of

Leak classification is made from comparison between measured VOC concentration in the vicinity of leaking point and threshold values.

Inventory of equipment: A database is established. Components are classified in term of type, service and process conditions. For calculating emission factors and costs per point, only two types of equipment are taken into account for simplification reason: valves and flanges.

Non accessible leaking points: To estimate the NMVOC emission from the non accessible points, it has been considered the same average emission factor by equipment family (flanges or valves) reported to the 2 400 considered points (9600 accessible points for 12 000 points). Obviously, no reduction impact is taken into account for these points whatever the Primary Measures chosen.

Efficiency of tightening: The efficiency of tightening for the first operation is considered to be 30 % of emission reduction for leaks > 5 000 ppm (PMC 01) or > 1 000 ppm (PMC 02 – PMC 03 – PMC 04). This efficiency of the following tightening operation is lower and enables to maintain the emissions (Figure 7.2.1).

Efficiency of basic maintenance: The efficiency of basic maintenance is considered to be 50 % of emission reduction for leaks > 100 000 ppm (flanges + valves in PMC 01) or > 10 000 ppm (flanges + valves in PMC 02 - flanges in PMC 04) or > 5 000 ppm (flanges + valves in PMC 03). This efficiency is only valid for the first operation. The efficiency of the following operations is lower (Figure 7.2.1).

Efficiency of heavy maintenance: For PMC 04, the heavy intervention considered consists in replacing 100 % of valves with leak > 10 000 ppm with un-leaking valves. It has been assumed that leak higher than 100 000 ppm will appear again after that change but their number is reduced by the percentage of valve replaced.

Control is achieved on points that were detected leaking and tightening is carried out if necessary.

Final document: 24-11-03 + modification 24-02-05

It is also assumed that the probability of emergence of new leaks is constant over time for each leak category so the average emission per point will increase linearly with time. (It is interesting to know that according to experience leaks appear in random manner). It is also assumed that if no action is taken after a maintenance campaign, the average emission value will reach the reference installation value after 10 years.

The probability of identifying medium or large leaks has been estimated on the basis of measurements made on several installations in France and Belgium [5] as well as specific emission reductions resulting from tightening or basic maintenance completed by expert judgement. The probability to meet leaks of each category is reduced after the first operation as the general standard of the installation is improved.

The efficiency of operations carried out with PMC 01, 02, 03 and 04 is presented in tables 7.2.1 to 7.2.4 for valves and in tables 7.2.5 and 7.2.8 for flanges.

References : Efficiencies are derived from the data collected by UIC [5]. UIC has provided data for the following ranges of leaks : 0-5000 ppm 5000-100 000 ppm > 100 000 ppm

For calculation CITEPA ,in consultation with ADEME, has taken into account the following ranges : 0-1000 ppm 1000-5000ppm 5000-10 000 ppm 10 000-100 000 ppm > 100 000 ppm

Figure 7.2.1 : Trends in emissions from accessible valves after tightening and basic maintenance from a situation where no action had been taken

It can be noticed that the first operation of tightening and basic maintenance on the leaking point (valves in downstream units) allows to reduce its emissions from 30 to about 14 kg/year. The operations of tightening and basic maintenance achieved after this first operation allow to maintain the emissions.

Downess of looks www		-1000	1000 40 5000	5000 to 10000	10000 to 100000	× 100000	
Kanges of leaks - ppm		<1000	1000 10 5000	5000 10 10000	55000	> 100000	
Levels of leaks		100	3500	7000	55000	pegged value	
Emissions of VOC according to SOCMI equations							
Light liquid valves	kg/hr/pt	0.00025	0.00428	0.00744	0.03845	0.15	
Light liquid pumps	kg/hr/pt	0.00084	0.01581	0.02800	0.15304	0.62	
Average valves+pumps	kg/hr/pt	0.00055	0.01005	0.01772	0.09575	0.39	
Number of hours of work	8600	h/year					
Light liquid valves	kg/year/pt	2.2	36.8	64.0	330.7	1290.0	
Light liquid pumps	kg/year/pt	7.3	136.0	240.8	1316.2	5332.0	
Average valves+pumps	kg/year/pt	3.4	61.6	108.2	577.1	2300.5	
Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	Total
Percentage of leaks according to the ranges of leaks	%	97.50%	0.70%	0.30%	0.50%	1.00%	100.00%
Average emissions	kg/year/pt	3.4	0.4	0.3	2.9	23.0	30.00
First operation - tightening of leak > 5000 ppm**							
Percentage of leaks according to the ranges of leaks	%	98.04%	0.70%	0.21%	0.35%	0.70%	100.00%
Average emissions	kg/year/pt	3.4	0.4	0.2	2.0	16.1	22.2
Changes of valves with leaks > 100 000 ppm				<u>.</u>			
Percentage of leaks according to the ranges of leaks	%	98.39%	0.70%	0.21%	0.35%	0.35%	100.00%
Average emissions	kg/year/pt	3.4	0.4	0.2	2.0	8.1	14.1
Emissions after 5 years is nothing has been done*				<u>.</u>			
Percentage of leaks according to the ranges of leaks	%	97.94%	0.70%	0.25%	0.42%	0.68%	100.00%
Average emissions	kg/year/pt	3.4	0.4	0.3	2.4	15.5	22.0
After 5 years when tightening is operated							
Percentage of leaks according to the ranges of leaks	%	98.18%	0.70%	0.21%	0.35%	0.56%	100.00%
Average emissions	kg/year/pt	3.4	0.4	0.2	2.0	12.8	18.9
Average on the five years period***							
Percentage of leaks according to the ranges of leaks	%	98.23%	0.70%	0.22%	0.37%	0.48%	100.00%
Average emissions	kg/year/pt	3.4	0.4	0.2	2.1	11.1	17.3

Table 7.2.1: Accessible valves - Hypothesis taken into account for estimating emissions of primary measure 01.

* In 10 years, it is assumed that the proportions of leaks reach the initial level.
** the efficiency of tightening is assumed to be the same for flanges with leak of 5000 to 100 000 ppm (50%).
*** See figure 7.2.2 for explanations on the average value on the period.

Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	
Levels of leaks		100	3500	7000	55000	pegged value	
Emissions of VOC according to SOCMI equations							
Light liquid valves	kg/hr/pt	0.00025	0.00428	0.00744	0.03845	0.15	
Light liquid pumps	kg/hr/pt	0.00084	0.01581	0.02800	0.15304	0.62	
Average valves+pumps	kg/hr/pt	0.00055	0.01005	0.01772	0.09575	0.39	
Number of hours of work	8600	h/year					
Light liquid valves	kg/year/pt	2.2	36.8	64.0	330.7	1290.0	
Light liquid pumps	kg/year/pt	7.3	136.0	240.8	1316.2	5332.0	
Average valves+pumps	kg/year/pt	3.4	61.6	108.2	577.1	2300.5	
Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	Total
Percentage of leaks according to the ranges of leaks	%	97.50%	0.70%	0.30%	0.50%	1.00%	100.00%
Average emissions	kg/year/pt	3.4	0.4	0.3	2.9	23.0	30.00
First operation - tightening of leak > 1000 ppm**							
Percentage of leaks according to the ranges of leaks	%	98.25%	0.49%	0.21%	0.35%	0.70%	100.00%
Average emissions	kg/year/pt	3.4	0.3	0.2	2.0	16.1	22.0
Changes of valves with leaks > 10 000 ppm							
Percentage of leaks according to the ranges of leaks	%	98.78%	0.49%	0.21%	0.18%	0.35%	100.00%
Average emissions	kg/year/pt	3.4	0.3	0.2	1.0	8.1	13.0
Emissions after 5 years is nothing has been done*							
Percentage of leaks according to the ranges of leaks	%	98.14%	0.59%	0.25%	0.34%	0.68%	100.00%
Average emissions	kg/year/pt	3.4	0.4	0.3	1.9	15.5	21.5
After 5 years when tightening is operated							
Percentage of leaks according to the ranges of leaks	%	98.46%	0.49%	0.21%	0.28%	0.56%	100.00%
Average emissions ***	kg/year/pt	3.4	0.3	0.2	1.6	12.8	18.4
Average on the five year period							
Percentage of leaks according to the ranges of leaks	%	98.54%	0.52%	0.22%	0.24%	0.48%	100.00%
Average emissions	kg/year/pt	3.4	0.3	0.2	1.4	11.1	16.5

Table 7.2.2: Accessible valves - Hypothesis taken into account for estimating emissions of primary measure 02.

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for flanges with leak of 5000 to 100 000 ppm (50%).

*** See figure 7.2.3 for explanations on the average value on the period.

Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	
Levels of leaks		100	3500	7000	55000	pegged value	
Emissions of VOC according to SOCMI equations			•				
Light liquid valves	kg/hr/pt	0.00025	0.00428	0.00744	0.03845	0.15	
Light liquid pumps	kg/hr/pt	0.00084	0.01581	0.02800	0.15304	0.62	
Average valves+pumps	kg/hr/pt	0.00055	0.01005	0.01772	0.09575	0.39	
Number of hours of work	8600	h/year					
Light liquid valves	kg/year/pt	2.2	36.8	64.0	330.7	1290.0	
Light liquid pumps	kg/year/pt	7.3	136.0	240.8	1316.2	5332.0	
Average valves+pumps	kg/year/pt	3.4	61.6	108.2	577.1	2300.5	
			•				
Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	Total
Percentage of leaks according to the ranges of leaks	%	97.50%	0.70%	0.30%	0.50%	1.00%	100.00%
Average emissions	kg/year/pt	3.4	0.4	0.3	2.9	23.0	30.00
First operation - tightening of leak > 1000 ppm**							
Percentage of leaks according to the ranges of leaks	%	98.25%	0.49%	0.21%	0.35%	0.70%	100.00%
Average emissions	kg/year/pt	3.4	0.3	0.2	2.0	16.1	22.0
Changes of valves with leaks > 5 000 ppm							
Percentage of leaks according to the ranges of leaks	%	98.88%	0.49%	0.11%	0.18%	0.35%	100.00%
Average emissions	kg/year/pt	3.4	0.3	0.1	1.0	8.1	12.9
Emissions after 5 years is nothing has been done*							
Percentage of leaks according to the ranges of leaks	%	98.19%	0.59%	0.20%	0.34%	0.68%	100.00%
Average emissions	kg/year/pt	3.4	0.4	0.2	1.9	15.5	21.4
After 5 years when tightening is operated							
Percentage of leaksaccording to the ranges of leaks	%	98.51%	0.49%	0.17%	0.28%	0.56%	100.00%
Average emissions	kg/year/pt	3.4	0.3	0.2	1.6	12.8	18.3
Average on the five year period***							
Percentage of leaks according to the ranges of leaks	%	98.61%	0.52%	0.14%	0.24%	0.48%	100.00%
Average emissions	kg/year/pt	3.4	0.3	0.2	1.4	11.1	16.4

Table 7.2.3: Accessible valves - Hypothesis taken into account for estimating emissions of primary measure 03.

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for flanges with leak of 1000 to 100 000 ppm (50%).

*** See figure 7.2.4 for explanations on the average value on the period.

Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000
Levels of leaks		100	3500	7000	55000	pegged value
Emissions of VOC according to SOCMI equations						
Light liquid valves	kg/hr/pt	0.00025	0.00428	0.00744	0.03845	0.15
Light liquid pumps	kg/hr/pt	0.00084	0.01581	0.02800	0.15304	0.62
Average valves+pumps	kg/hr/pt	0.00055	0.01005	0.01772	0.09575	0.39
Number of hours of work	8600	h/year				
Light liquid valves	kg/year/pt	2.2	36.8	64.0	330.7	1290.0
Light liquid pumps	kg/year/pt	7.3	136.0	240.8	1316.2	5332.0
Average valves+pumps	kg/year/pt	3.4	61.6	108.2	577.1	2300.5

Table 7.2.4: Accessible valves - Hypothesis taken into account for estimating emissions of primary measure 04.

Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000	Total
Percentage of leaks according to the ranges of leaks	%	97.50%	0.70%	0.30%	0.50%	1.00%	100.00%
Average emissions	kg/year/pt	3.4	0.4	0.3	2.9	23.0	30.00
First operation - tightening of leak > 1000 ppm**							
Percentage of leaks according to the ranges of leaks	%	98.25%	0.49%	0.21%	0.35%	0.70%	100.00%
Average emissions	kg/year/pt	3.4	0.3	0.2	2.0	16.1	22.0
Changes of valves with leaks > 10 000 ppm							
Percentage of leaks according to the ranges of leaks	%	99.30%	0.49%	0.21%	0.00%	0.00%	100.00%
Average emissions	kg/year/pt	3.4	0.3	0.2	0.0	0.0	3.9
Emissions after 5 years is nothing has been done*							
Percentage of leaks according to the ranges of leaks	%	98.41%	0.59%	0.25%	0.25%	0.49%	100.00%
Average emissions	kg/year/pt	3.4	0.4	0.3	1.4	11.4	16.8
After 5 years when tightening is operated							
Percentage of leaks according to the ranges of leaks	%	98.69%	0.49%	0.21%	0.20%	0.41%	100.00%
Average emissions	kg/year/pt	3.4	0.3	0.2	1.2	9.4	14.5
Average on the five year period***							
Percentage of leaks according to the ranges of leaks	%	98.92%	0.52%	0.22%	0.11%	0.23%	100.00%
Average emissions	kg/year/pt	3.4	0.3	0.2	0.7	5.2	9.8

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for flanges with leak of 5000 to 100 000 ppm (50%).

*** See figure 7.2.5 for explanations on the average value on the period.

72
Ranges of leaks – ppm		<1000	1000 to 5000	5000 to	10000 to	> 100000
				10000	100000	
Levels of leaks		100	3500	7000	55000	pegged value
Emissions of VOC according to SOCMI equations						
Connectors	kg/hr/pt	0.00018	0.00418	0.00771	0.04781	0.22
Average valves+pumps	kg/hr/pt	0.00055	0.01005	0.01772	0.09575	0.39
Number of hours of work	8600	h/year				
Connectors	kg/year/pt	1.5	35.9	66.3	411.2	1892.0

Table 7.2.5: Accessible flanges - Hypothesis taken into account for estimating emissions of primary measure 01.

Ranges of leaks – ppm		<1000	1000 to 5000	5000 to 10000	10000 à 100000	> 100000	Total
Percentage of leaks according to the ranges of leaks	%	98.90%	0.10%	0.25%	0.25%	0.50%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.2	0.8	9.5	12.0
First operation - tightening of leak > 5000 ppm**							
Percentage of leaks according to the ranges of leaks	%	99.20%	0.10%	0.18%	0.18%	0.35%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.6	6.6	8.8
Changes of flanges with leaks > 100 000 ppm							
Percentage of leaks according to the ranges of leaks	%	99.37%	0.10%	0.18%	0.18%	0.18%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.6	3.3	5.5
Emissions after 5 years is nothing has been done*							
Percentage of leaks according to the ranges of leaks	%	99.14%	0.10%	0.21%	0.21%	0.34%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.7	6.4	8.7
After 5 years when tightening is operated							
Percentage of leaks according to the ranges of leaks	%	99.27%	0.10%	0.18%	0.18%	0.28%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.6	5.3	7.5
Average on the five year period							
Percentage of leaks according to the ranges of leaks	%	99.29%	0.10%	0.18%	0.18%	0.24%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.6	4.6	6.8

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for flanges with leak of 5000 to 100 000 ppm (30%).

*** See figure 7.2.6 for explanations on the average value on the period.

Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000
Levels of leaks		100	3500	7000	55000	pegged value
Emissions of VOC according to SOCMI equations						
Connectors	kg/hr/pt	0.00018	0.00418	0.00771	0.04781	0.22
Average valves+pumps	kg/hr/pt	0.00055	0.01005	0.01772	0.09575	0.39
Number of hours of work	8600	h/year				
Connectors	kg/year/pt	1.5	35.9	66.3	411.2	1892.0

Table 7.2.6: Accessible flanges - Hypothesis taken into account for estimating emissions of primary measure 02.

Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 à 100000	> 100000	Total
Percentage of leaks according to the ranges of leaks	%	98.90%	0.10%	0.25%	0.25%	0.50%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.2	0.8	9.5	12.0
First operation - tightening of leak > 1000 ppm**							
Percentage of leaks according to the ranges of leaks	%	99.23%	0.07%	0.18%	0.18%	0.35%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.6	6.6	8.8
Changes of flanges with leaks > 10 000 ppm							
Percentage of leaks according to the ranges of leaks	%	99.49%	0.07%	0.18%	0.09%	0.18%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.3	3.3	5.2
Emissions after 5 years is nothing has been done*							
Percentage of leaks according to the ranges of leaks	%	99.20%	0.08%	0.21%	0.17%	0.34%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.6	6.4	8.6
After 5 years when tightening is operated							
Percentage of leaks according to the ranges of leaks	%	99.34%	0.07%	0.18%	0.14%	0.28%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.5	5.3	7.4
Average on the five year period*							
Percentage of leaks according to the ranges of leaks	%	99.38%	0.07%	0.18%	0.12%	0.24%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.4	4.6	6.6

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for flanges with leak of 1000 to 100 000 ppm (30%).

*** See figure 7.2.7 for explanations on the average value on the period.

Ranges of leaks - ppm		<1000	1000 to 5000	5000 to	10000 to	> 100000
				10000	100000	
Levels of leaks		100	3500	7000	55000	pegged value
Emissions of VOC according to SOCMI equations						
Connectors	kg/hr/pt	0.00018	0.00418	0.00771	0.04781	0.22
Average valves+pumps	kg/hr/pt	0.00055	0.01005	0.01772	0.09575	0.39
Number of hours of work	8600	h/year				
Connectors	kg/year/pt	1.5	35.9	66.3	411.2	1892.0

Table 7.2.7: Accessible flanges - Hypothesis taken into account for estimating emissions of primary measure 03.

Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 à 100000	> 100000	Total
Percentage of leaks according to the ranges of leaks	%	98.90%	0.10%	0.25%	0.25%	0.50%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.2	0.8	9.5	12.0
First operation - tightening of leak > 1000 ppm**							
Percentage of leaks according to the ranges of leaks	%	99.23%	0.07%	0.18%	0.18%	0.35%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.6	6.6	8.8
Changes of flanges with leaks > 5 000 ppm							
Percentage of leaks according to the ranges of leaks	%	99.58%	0.07%	0.09%	0.09%	0.18%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.3	3.3	5.2
Emissions after 5 years is nothing has been done*							
Percentage of leaks according to the ranges of leaks	%	99.24%	0.08%	0.17%	0.17%	0.34%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.6	6.4	8.6
After 5 years when tightening is operated							
Percentage of leaks according to the ranges of leaks	%	99.37%	0.07%	0.14%	0.14%	0.28%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.5	5.3	7.3
Average on the five year period**							
Percentage of leaks according to the ranges of leaks	%	99.44%	0.07%	0.12%	0.12%	0.24%	100.00%
Average emissions	kg/year/pt	1.5	0.02	0.1	0.4	4.6	6.6

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for flanges with leak of 1000 to 100 000 ppm (30%). *** See figure 7.2.8 for explanations on the average value on the period.

Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 to 100000	> 100000
Levels of leaks		100	3500	7000	55000	pegged value
Emissions of VOC according to SOCMI equations						
Connectors	kg/hr/pt	0.00018	0.00418	0.00771	0.04781	0.22
Average valves+pumps	kg/hr/pt	0.00055	0.01005	0.01772	0.09575	0.39
Number of hours of work	8600	h/year				
Connectors	kg/year/pt	1.5	35.9	66.3	411.2	1892.0

Table 7.2.8: Accessible flanges - Hypothesis taken into account for estimating emissions of primary measure 04.

Ranges of leaks - ppm		<1000	1000 to 5000	5000 to 10000	10000 à 100000	> 100000	Total
Percentage of leaks according to the ranges of leaks	%	98.90%	0.10%	0.25%	0.25%	0.50%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.2	0.8	9.5	12.0
First operation - tightening of leak > 1000 ppm**							
Percentage of leaks according to the ranges of leaks	%	99.23%	0.07%	0.18%	0.18%	0.35%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.6	6.6	8.8
Changes of flanges with leaks > 10 000 ppm							
Percentage of leaks according to the ranges of leaks	%	99.49%	0.07%	0.18%	0.09%	0.18%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.3	3.3	5.2
Emissions after 5 years is nothing has been done*							
Percentage of leaks according to the ranges of leaks	%	99.20%	0.08%	0.21%	0.17%	0.34%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.6	6.4	8.6
After 5 years when tightening is operated							
Percentage of leaks according to the ranges of leaks	%	99.34%	0.07%	0.18%	0.14%	0.28%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.5	5.3	7.4
Average on the five year period***							
Percentage of leaks according to the ranges of leaks	%	99.38%	0.07%	0.18%	0.12%	0.24%	100.00%
Average emissions	kg/year/pt	1.5	0.0	0.1	0.4	4.6	6.6

* In 10 years, it is assumed that the proportions of leaks reach the initial level. ** the efficiency of tightening is assumed to be the same for flanges with leak of 1000 to 100 000 ppm (30%).

*** See figure 7.2.9 for explanations on the average value on the period.

Figure 7.2.2: Accessible valves - Calculations of average emissions for the period of 5 years - PMC 01.

Figure 7.2.3: Accessible valves - Calculations of average emissions for the period of 5 years - PMC 02.

Figure 7.2.4: Accessible valves - Calculations of average emissions for the period of 5 years - PMC 03.

Figure 7.2.5: Accessible valves - Calculations of average emissions for the period of 5 years - PMC 04.

Figure 7.2.6: Accessible flanges - Calculations of average emissions for the period of 5 years - PMC 01.

Figure 7.2.7: Accessible flanges - Calculations of average emissions for the period of 5 years - PMC 02.

Figure 7.2.8: Accessible flanges - Calculations of average emissions for the period of 5 years - PMC 03.

Figure 7.2.9: Accessible flanges - Calculations of average emissions for the period of 5 years - PMC 04.

Tables 7.2.9 to 7.2.12 present the calculations of emissions for the reference installation for primary measures 01 and 02.

	Valves	Flanges	Total emissions	NMVOC emissions
	NMVOC t/year	NMVOC t/year	t NMVOC/y	
Fugitive emissions on inaccessible points	960*0.03=29	1440*0.012=17	46	
Fugitive emissions with PMC 00	3840*0.03 =115	5760*0.012 =69	184	
Fugitive emissions with PMC 01	3840*0.0173 =66	5760*0.0068 = 39	106	
Emissions avoided with PMC 01	49	30	78	
Total emissions with PMC 00			230 (46+184)	1.0
Total emissions with PMC 01			152 (46+106)	0.66

 Table 7.2.10: NMVOC emissions with primary measure 00 and primary measure 02

	Valves	Flanges	Total	NMVOC
	NMVOC t/year	NMVOC t/year	t NMVOC/y	t/t VOC
Fugitive emissions on inaccessible points	960*0.03=29	1440*0.012=17	46	
Fugitive emissions with PMC 00	3840*0.03 =115	5760*0.012 =69	184	
Fugitive emissions with PMC 02	3840*0.0165 =63	5760*0.0066 = 39	101	
Emissions avoided with PMC 02	52	31	83	
Total emissions with PMC 00			230 (46+184)	1.0
Total emissions with PMC 02			147 (46+104)	0.64

	Valves	Flanges	Total	NMVOC emissions
	NMVOC t/year	NMVOC t/year	t NMVOC/y	t/t voc.
Fugitive emissions on inaccessible points	960*0.03=29	1440*0.012=17	46	
Fugitive emissions with PMC 00	3840*0.03 =115	5760*0.012 =69	184	
Fugitive emissions with PMC 03	3840*0.0164 =63	5760*0.0066 = 38	101	
Emissions avoided with PMC 03	52	31	83	
Total emissions with PMC 00			230 (46+184)	1.0
Total emissions with PMC 03			147 (46+101)	064

Table 7.2.11 NMVOC emissions with	primary measure 00	and primary measure 03
-----------------------------------	--------------------	------------------------

Table 7.2.12 NMVOC emissions with primary measure 00 and primary measure 04

	Valves	Flanges	Total emissions	NMVOC emissions
	NMVOC t/year	NMVOC t/year	t NMVOC/y	t/t VOC
Fugitive emissions on	960*0.03=29	1440*0.012=17	46	
inaccessible points				
Fugitive emissions with	3840*0.03	5760*0.012	184	
PMC 00	=115	=69		
Fugitive emissions with	3840*0.0098	5760*0.0066	76	
PMC 02	=38	= 38		
Emissions avoided with	78	31	108	
PMC 02				
Total emissions with			230	1.0
PMC 00			(46+184)	
Total emissions with			122	0.53
PMC 02			(46+76)	

83

7.3 Derivation of costs

Cost for the database establishment. the first measurement (100 % of points). the first basic maintenance have been considered as investment costs. even if labour costs are mainly involved. Annual operation cost is composed of the control of 20 % of points and tightening of leaking points and takes into account 20 % of the cost of basic maintenance. carried out on a five year basis during shutdown.

Costs taken into account are as follows:

	Composition of costs	Labour demand per	Cost in France
		point	(labour cost
		h/pt	24.3 €⁄h)
Control by sniffing	100 % labour cost	0.2	2 €pt
Tightening	100 % labour cost	0.8	20 €pt
Basic maintenance	50 % labour cost	4.1	100 €pt
	50 % material	-	100 €pt

Table 7.3.1 and 7.3.4 present the total costs determined for PMC 01 to PMC 04

 Table 7.3.1 : Total costs determined for primary measure 01.

		Valves			Flanges		Total	
		Material	Labour	Total cost	Material	Labour	Total	
		cost	cost		cost	cost	cost	
Investments - Establishment of a first LDAR program	l							
Investment for the data base	€	3840	3840	7680	5760	5760	11520	19200
First monitoring of all points	€	0	19200	19200	0	28800	28800	48000
Tightening on leaking points > 5000 ppm	€operation	0	1382	1382	0	1152	1152	2534
Basic maintenance during shutdown on leaks > 100 000	€basic	2600	2699	5276	2016	2016	4022	0.409
ppm	maintenance	2000	2000	5570	2010	2010	4032	9400
Second control: Monitoring on potential leaking points	€verification	0	346	346	0	288	288	634
	monitoring	<u> </u>	0.0	0.10	0	200	200	
Total investment	€	6528	27456	33984	7776	38016	45792	79776
Annualized costs (4%)	€year			4190			5646	9836
Annual costs between two scheduled shutdowns								
Yearly action on 20 % points and 0.2 basic maintenan	ce							
Monitoring of points	€year	0	3840	3840	0	5760	5760	9600
Tightening on leaking points > 5000 ppm	€year	0	208	208	0	175	175	383
Basic maintenance on leaking points > 100 000 ppm	€year	428	428	857	321	321	643	1500
Second control : monitoring of potential leaking points	€year	0	52	52	0	44	44	96
Total operation cost	€year	428	4528	4957	321	6300	6622	11578
Total annual cost*	€year			9147			12268	21415
Recovered VOC **	€year			19519			11846	31365

Table 7.3.2: total costs determined for primary measure 02.

		Valves		Flanges			Total	
		Material	Labour	Total cost	Material	Labour	Total	
		cost	cost		cost	cost	cost	
Investments - Establishment of a first LDAR program	l							
Investment for the data base	€	3840	3840	7680	5760	5760	11520	19200
First monitoring of all points	€	0	19200	19200	0	28800	28800	48000
Tightening on leaking points > 1000 ppm	€operation	0	1920	1920	0	1267	1267	3187
Basic maintenance during shutdown on leaks > 10000 ppm	€basic maintenance	4032	4032	8064	3024	3024	6048	14112
Second control: Monitoring on potential leaking points	€verification monitoring	0	480	480	0	317	317	797
Total investment	€	7872	29472	37344	8784	39168	47952	85296
Annualized costs (4%)	€year			4605			5912	10517
Annual costs between two scheduled shutdowns								
Yearly action on 20 % points and 0.2 basic maintenan	ce							
Monitoring of points	€year	0	3840	3840	0	5760	5760	9600
Tightening on leaking points > 1000 ppm	€year	0	286	286	0	185	185	471
Basic maintenance on leaking points > 10 000 ppm	€year	643	643	1285	482	482	964	2249
Second control : monitoring of potential leaking points	€year	0	71	71	0	46	46	118
Total operation cost	€year	643	4840	5482	482	6473	6955	12437
Total annual cost*	€year			10087			12868	22954
Recovered VOC **	€year			20802			12345	33147

 Table 7.3.3: total costs determined for primary measure 03.

		Valves			Flanges			Total
		Material	Labour	Total cost	Material	Labour	Total cost	
		cost	cost		cost	cost		
Investments - Establishment of a first LDAR program	l							
Investment for the data base	€	3840	3840	7680	5760	5760	11520	19200
First monitoring of all points	€	0	19200	19200	0	28800	28800	48000
Tightening on leaking points > 1000 ppm	€operation	0	1920	1920	0	1267	1267	3187
Basic maintenance during shutdown on leaks > 5000	€basic	4838	4838	9677	4032	4032	8064	17741
ppm	maintenance							
Second control: Monitoring on potential leaking points	€verification	0	480	480	0	317	317	797
	monitoring							
Total investment	€	8678	30278	38957	9792	40176	49968	88925
Annualized costs (4%)	€year			4803			6161	10964
Annual costs between two scheduled shutdowns								
Yearly action on 20 % points and 0.2 basic maintenan	ce							
20 % of points each year	€year	0	3840	3840	0	5760	5760	9600
Tightening on leaking points > 1000 ppm	€year	0	278	278	0	175	175	453
Basic maintenance on leaking points > 5 000 ppm	€year	771	771	1542	643	643	1285	2828
Second control : monitoring of potential leaking points	€year	0	69	69	0	44	44	113
Total operation cost	€year	771	4958	5729	643	6621	7264	12994
Total annual cost*	€year			10533			13425	23958
Recovered VOC **	€year			20924			12433	33358

Table 7.3.4: total costs determined for primary measure 04.

	_		Valves			Flanges		Total
		Material	Labour	Total cost	Material	Labour	Total	
		cost	cost		cost	cost	cost	
Investments - Establishment of a first LDAR program	1							
Investment for the data base	€	3840	3840	7680	5760	5760	11520	19200
First monitoring of all points	€	0	19200	19200	0	28800	28800	48000
Tightening on leaking points > 1000 ppm (1000 to 10000 ppm for valves and flanges > 1000 ppm)	€operation	0	1920	1920	0	1267	1267	3187
Basic maintenance during shutdown on flanges with leaks > 10000 ppm	€basic maintenance	0	0	0	3024	3024	6048	6048
Heavy maintenance during shutdown on valves with leak	s > 10000 ppm	40320	40320	80640	0	0		80640
Second control: Monitoring on potential leaking point	€verification monitoring	0	480	480	0	317	317	797
Total investment	€	44160	65760	109920	8784	39168	47952	157872
Annualized costs (4%)	€year			13553			5912	19466
Annual costs between two scheduled shutdowns								
Yearly action on 20 % points and 0.2 basic maintenan	ice							
20 % of points each year	€year	0	3840	3840	0	5760	5760	9600
Tightening on leaking point > 1000 ppm	€year	0	244	244	0	185	185	429
Basic maintenance on leaking flanges > 10 000 ppm	€year	0	0	0	482	482	964	964
Heavy maintenance on leaking valves > 10 000 ppm	€year	4710	4710	9421	0	0	0	9421
Monitoring on potential leaking point	€year	0	61	61	0	46	46	107
Total operation cost	€year	4710	8855	13566	482	6473	6955	20521
Total annual cost*	€year			27119			12868	39987
Recovered VOC **	€year			31014			12345	43359

Comments

88

Chapter to be completed with comments received from national experts

8

9 References for downstream units

- [1] MONZAIN M. (UIC) ; MONGENET F. (UIC) ; CASTRO F. (UIC): Meeting held in Paris on 21/08/02 with N. ALLEMAND and J. VINCENT from CITEPA aiming at defining the best approach for cost definition in the organic chemical sector. Minutes of the meeting.
- [2] KLIMONT Z. ; AMANN M. ; COFALA J. : Estimating costs for controlling emissions of NMVOC from stationary sources in Europe Report IR – 00- 51 IIASA – August 2000
- [3] IIASA web site for NMVOC emission documents : http://www.iiasa.ac.at/~rains/voc_review.html
- [4] IPPCB BREF large volume organic chemical industry February 2003
- [5] MONZAIN M. (UIC). LUYTEN P. (Atofina) and MARLIER G. (UIC): data collected in France for documenting the EGTEI work and the preparation and discussion of a project of regulation of fugitive emissions on steam crackers of the French ministry of environment.
- [6] MONZAIN M. (UIC); DE MOULIN J.M. (CEFIC); HARSHAM K. (CEFIC); MARLIER G. (UIC); SCOLES G. (Shell chemicals): Meeting held in Paris on 13/03/03 with N. ALLEMAND from CITEPA for the cost definition in steam cracking. Minutes of the meeting.
- [7] EPA Protocol for equipment leak Emission estimates EPA 453-95-017 – 1995
- [8] French ministry of Ecology and sustainable development: Project of regulatory text on fugitive emissions from petrochemical plants

 [9] CEN TC 264 TC 264 WI 17 Measurement of fugitive emission of vapours generating from equipment and piping leaks Paper not yet public 2003