

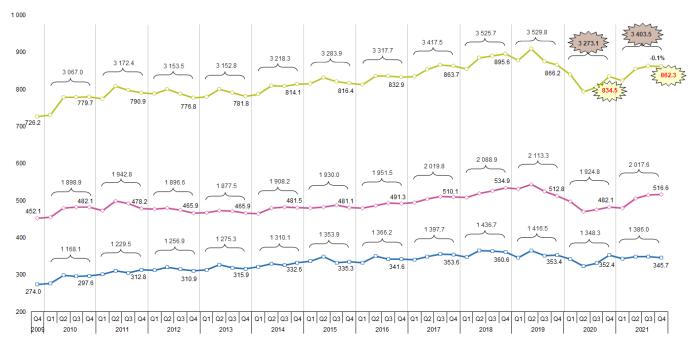
UNECE guidance document Maritime shipping

TFTEI technical secretariat Grégoire Bongrand (Citepa)

8th TFTEI Annual Meeting, October 7th, 2022 - HYBRID MEETING - ROME

Guidance document on shipping

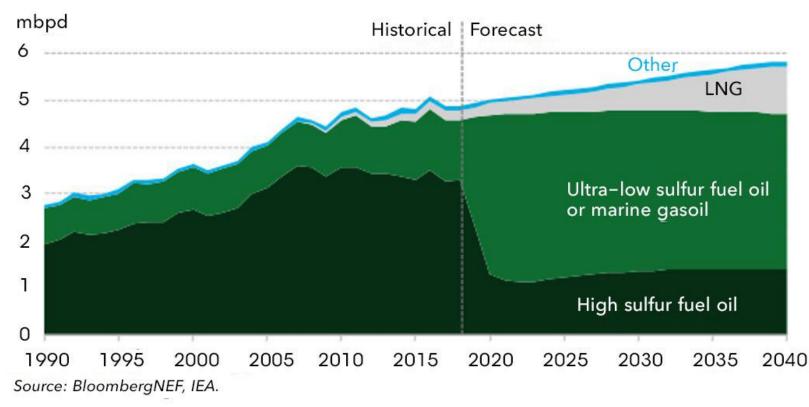
- Objective: provide to CLRTAP Parties effective means to minimize impacts of maritime shipping activities on human health and environment
- Scope: all marine ships under the MARPOL convention, during navigation but also while maneuvering in ports and at berth
- Substances targeted: SO_2 , NO_x , PM, BC, VOC and CO
- Subject: emission reduction techniques, technical and financial aspects
- Format: 10,000 words (with no images, figures or tables)
- Finalization and submission to the UN in December 2022


Overview of presentation/guidance doc

- Background information
- Legislative framework
- Primary reduction techniques : fuel switches, slow steaming, etc.
- Secondary reduction techniques : scrubbers, EGR, SCR and filters
- Reduction techniques for ships at berth
- Conclusions and next steps

- International shipping transport: ~ 80% of world trade volumes
- Intensifying activities:
 - . Highest amount of goods handled in EU ports in 2019 (2021 \leftrightarrow 2017)
 - . Growing oil product consumptions

Gross weight of seaborne goods handled in main ports by direction, EU, 2009Q4-2021Q4 (million tonnes)

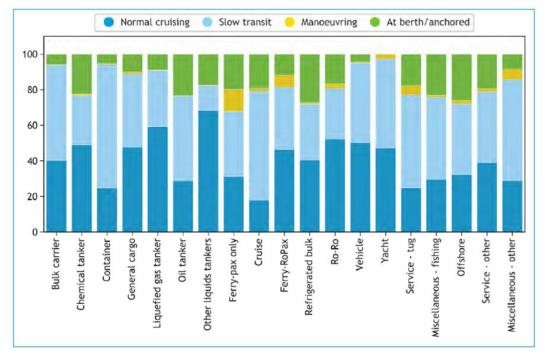


—→ Total →>-Inwards →>-Outwards

Background information – generic :

- International shipping transport: ~ 80% of world trade volumes
- Intensifying activities:
 - . Highest amount of goods handled in EU ports in 2019 (2021 \leftrightarrow 2017)
 - . Growing oil product consumptions

Global consumption of marine bunkers



6

Background information – ports :

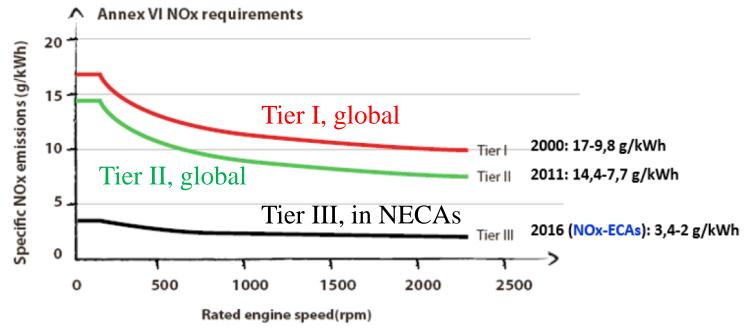

- Increased interest due to the proximity with population
- Manoeuvring and hotelling contribute largely to the ship total fuel consumption (~ 20% for chemical and oil tankers)
 - \rightarrow important pollutant emissions, especially due to operating conditions
- Fugitive VOC emissions due to O&G distribution (2017: 2.5 Mt vs. 0.8 Mt comb.)

Share of GHG emissions (in CO_{2e}) of international shipping in 2018 (source: IMO 2020)

Fuel sulphur content limits (in wt%) according to Marpol Convention Annex VI

 \rightarrow Recent update : implementation of a SECA in the Mediterranean sea in 2025

In ports : regional regulations imposing 0.1 wt% (Dir. 2012/33/EU for EU or in California within 24 nm zone)



NO_x: Marpol Convention annex VI requirements

- ✓ Tier I limits to be met globally by all ships from January 1st, 2000
- ✓ **Tier II limits to be met globally** by all ships constructed after January 1st, 2011
- ✓ Tier III limits to be met in NO_x Emission Control Areas (NECA)

North America NECA (2016) and Baltic Sea, North Sea and English Channel (2021)

In ports : regional only ; e.g. 6 Californian ports impose shore power or else alternative techniques to achieve similar reductions (> 85-90 % ; for PM as well) 8

Primary reduction measures: fuel switch

Low-sulphur content fuel oils:

- Large SO₂ reductions since IMO 2020 but further possible
- Distillate fuels: reductions of PM of 50-90% and BC of 0-80%

LNG:

- SO₂ emissions almost negligible (90-100% reductions)
- Other reductions: 64-90% NO_x , 60-98% PM, 75-90% BC but CH_4 increase
- Gain in fuel consumption (5-10%) \rightarrow hence CO₂

Biofuels:

- Lower carbon footprint: 70-100% on LCA basis, but fuel penalty of 8-11%
- PM reductions 12-70% and 38-75% for BC compared with fuel oil

Primary reduction measures: fuel switch

Methanol:

- Drastic CO₂ reductions if made from biomass
- SO₂ almost negligible; reductions of PM > 90% and NO_x from 30-60%
- Fuel penalty of ~ 9%

Hydrogen (H₂):

- Large CO_2 reductions if made from water electrolysis (no CO_2 if nuclear or RE)
- If use in fuel cells \rightarrow zero emission
- Problems of space, availability and safety + fuel cell matureness for ships

Ammonia (NH₃):

- Ammonia is carbon-free, but energy-intensive production \rightarrow green ammonia
- Main problem is toxicity; but better than H_2 for space, storage and infrastructures

Primary reduction measures: other

Water-in-fuel emulsions (WiFE):

- Lower combustion temperature \rightarrow less thermal NO_x formation (up to 60% reduct[°])
- Other reductions: 20-90% for PM, 0-85% for BC
- Fuel penalty of 0-2%

Slow steaming (reducing sailing speed):

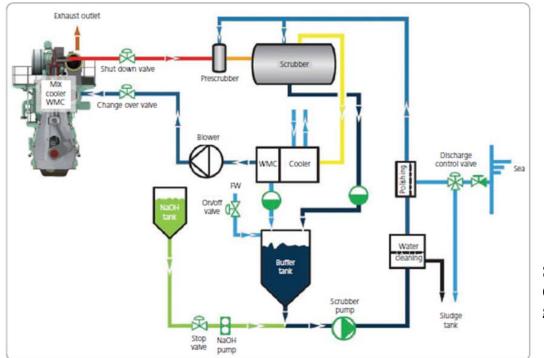
- Fuel savings up to 50% \rightarrow CO₂ and SO₂ emission reductions
- Other reductions: 21-64% for NO_x, 18-69% for PM, up to 30% for BC, but CO \checkmark

Battery-powered ships (electric or hybrid):

- CO₂ emission reductions of 10-40% for hybrid; no CO₂ for electric if production made from nuclear or renewable → though interest in LCA
- Transfer of pollutant emissions to TPP which are better equipped

Wind-propulsion assistance:

• Fuel savings up to 50% possible but average annual savings observed at 8-10%


TFTEI

Summary for primary measures

۱ <u>. </u>							
Reduction techniques :	SO ₂	NO _x	PM	BC		Investments costs (€/kW)	Operation & maintenance costs
Primary measures:							
- Switch to low sulphur fuels	up to $97\%^1$	-	60-90%	30-80%	-	-	88-223 €/t fuel
- Switch to LNG	90-100%	90%	98%	75-90%	- 5-10%	219-1603	- 43 €/t fuel (+ fuel savings)
- Switch to water-in-fuel emulsions	_	1-60%	20-90%	up to 85%	+ 0-2%	11-44	33-271 k€/year ⁵
- Switch to biodiesel and biofuels	_	_	12-37%	38-75%	+ 8-11%	_	-
- Switch to methanol	$100\%^{3}$	55%	99%	97% ²	+ 9%	_	10-15 €/MWh
- Slow steaming	13-50 ⁴ %	21-64%	18-69%	0-30%	- 15-50%	71	- 42-77% (fuel savings) ⁶
r	•		• •			•	

Z Secondary reduction measures: EGR

- Recirculation of exhaust gases into the combustion chamber: decrease combustion temperature, pressure and oxygen content → lower NO_x formation
- Pollutant reductions : 25-80% NO_x , 0-20% BC and PM due to gas cleaning
- Fuel penalty of 0-4% (hence CO₂ increase)

Source: Lloyd's Register (2012). Understanding exhaust gas treatment systems.

- Chemical reaction with ammonia solution to neutralize NO_x and form N_2 and H_2O
- Emission reductions: 70-95% for NO_x , but NH_3 potential leaks + 10-40% for PM and 50-90% for CO and VOC if oxidation catalyst is used

- Reducing agent Stack *High pressure* RTV Low pressure Vaporiser/mixer DCU Blower RSV ((RBV Exhaust receiver SCR **Exhaust gas receiver** reactor RBV (SCR Vaporiser reactor EGB 🖵 EGB Reducing T/C agent T RTV £ RSV Cooler Reactor Bypass Valve CBV (WMC Reactor Sealing Valve Scavenge air receiver Reactor Throttle Valve Cylinder Bypass Valve Scavenge air receiver Exhaust Gas Bypass valve Engine delivery
- Fuel penalty of 0-2%

RBV

RTV

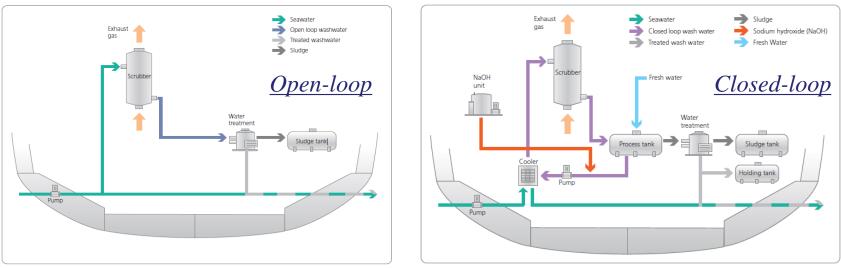
CBV

FGB

Source: Man 2018 - NOx reduction - Tier III solutions

Diesel particulate filters (DPF):

- Porous ceramic substrate to trap particles + burning (i.e. maintain efficiency)
- Emission reductions: 45-92% for PM, 70-90% for BC
 + if oxidation catalyst (only with low sulphur fuels) 60-90% for VOC/CO
- Fuel penalty of 1-4%


Baghouse filters:

- Sodium bicarbonate injected to tackle SO₂ and ensure good efficiency
- PM and BC reductions > 99%

- Chemical reaction with alkaline solution (solid or liquid) to neutralize SO₂
- 2 types: dry or wet, and 3 configurations for wet: open-loop, closed-loop or hybrid
- Reductions: 90-98% for SO₂, 70-90% for PM and 25-70% for BC
- Fuel penalties of about 0.5-3%

Source: Lloyd's Register (2012). Understanding exhaust gas treatment systems.

Reduction techniques :	SO ₂	NO _x	PM	BC	fuel penalty	Investments costs (€/kW)	Operation & maintenance costs
Primary measures:							
- Switch to low sulphur fuels	up to $97\%^1$	-	60-90%	30-80%	-	-	88-223 €/t fuel
- Switch to LNG	90-100%	90%	98%	75-90%	- 5-10%	219-1603	- 43 €/t fuel (+ fuel savings)
- Switch to water-in-fuel emulsions	-	1-60%	20-90%	up to 85%	+ 0-2%	11-44	33-271 k€/year ⁵
- Switch to biodiesel and biofuels	-	-	12-37%	38-75%	+ 8-11%	-	-
- Switch to methanol	$100\%^{3}$	55%	99%	97% ²	+ 9%	-	10-15 €/MWh
- Slow steaming	13-50 ⁴ %	21-64%	18-69%	0-30%	- 15-50%	71	- 42-77% (fuel savings) ⁶
Secondary measures:							
- Exhaust Gas Recirculation (EGR)	-	25-80%	-	0-20%	+ 1-2%	36-60	17-25€/kW
- Selective Catalytic Reduction (SCR)	-	70-95%	20-40%	_	-	19-100	3-10 €/MWh
- PM filters	-	-	45-92%	70-90%	+ 1-2%	16-130	+1-4% fuel penalties
- Scrubbers	90-98%	-	70-90%	25-70%	+ 0.5-3%	100-433	0,7 ⁷ -12 €/MWh (~2% of capital investments)

- BAT for propulsion engines applicable in ports, only some secondary measures unavailable at very low engine loads
- For fugitive VOC: vapor recovery systems tackle 99% of VOC emissions

On-shore power supply systems:

- Efficient if and only if electricity production is regulated/clean
- \rightarrow NO_x, SO₂, PM and VOC emissions can be reduced by up to 95%
- Implementation in Europe could reduce CO_2 emissions by 39% (up to 99% locally)

Shore-based exhaust cleaning systems:

- Plug to ship exhaust stacks to clean their flue gas
- General system: scrubber combined to SCR
- Reductions: > 85% for SO₂ and VOC, 98% for PM and 95% for NO_x

Thank you very much for your attention!

Questions?

TFTEI Technical Secretariat

(contact : gregoire.bongrand@citepa.org)

Karlsruher Institut für Technologie

Liberté Égalité Fraternité