

EGTEI expert sub-group on Emerging Technologies/Techniques for Large Combustion Plants >500 MWth up to 2030

LCP2030 sub-group final report

July 2008

Contact: Nathalie THYBAUD (nathalie.thybaud@ademe.fr)

French Environment and Energy Management Agency (ADEME) Air, Noise Pollution and Energy Efficiency Division Industrial and Agricultural Processes Department 20, avenue du Grésillé - B.P. 90406 49004 ANGERS Cedex 01 - France

Acknowledgements:

Mrs Nadine ALLEMAND - CITEPA Mr Mark BARRET - UCL University College London Mr Jean-Guy BARTAIRE (Co-chairman of EGTEI) - EDF Mr Giorgio BILIATO - EDIPOWER s.p.a. Mr Phil CAHILL - RWE npower Mr Pier Lorenzo DELL'ORCO - EDIPOWER s.p.a. Ms Rima EL HITTI - Ecole des Mines de Paris Mr Jacek GADOWSKI - BOT Gornictwo i Energetyka SA Mrs Julie GILLES - MEEDDAT Mr Gwénaël GUYONVARCH - ADEME Mr Dave HARRIDGE - ENTEC, representative of DEFRA Mr Michael HIETE - IFARE Mr Andrzej JAGUSIEWICZ - Clean Air for Europe - KlinEr Mr Pierre KERDONCUFF - IFARE Mr Smerkens KOEN - ECN Ms Andrea KRIZOVA - Czech Hydrometeorological Institute Mr Hartmut KRUGER - VGB PowerTech e.V. Mr Thomas KRUTZLER - Federal Environmental Agency Austria Mr Mats LINDGREN - Swedish EPA Mr Peter MEULEPAS - Ministry of the Flemish Region, Environmental Administration Mrs Carole ORY - EDF Mr Tiziano PIGNATELLI (Co-chairman of EGTEI) – ENEA Mr Jean-Pierre RIVRON - expert in LCP, formerly EDF Mrs Dorothée ROSTAL - IFARE Ms Kristina SAARINEN - Finnish Environment Institute Mrs Simone SCHUCHT - INERIS Mrs Nathalie THYBAUD - ADEME Mr Eric VESINE - ADEME Mr Julien VINCENT - CITEPA

Any representation or reproduction of the contents herein, in whole or in part, without the consent of the author(s) or their assignees or successors, is illicit under the French Intellectual Property Code (article L 122-4) and constitutes an infringement of copyright subject to penal sanctions. Authorised copying (article 122-5) is restricted to copies or reproductions for private use by the copier alone, excluding collective or group use, and to short citations and analyses integrated into works of a critical, pedagogical or informational nature, subject to compliance with the stipulations of articles L 122-10 – L 122-12 incl. of the Intellectual Property Code as regards reproduction by reprographic means.

About ADEME

The French Environment and Energy Management Agency (ADEME) is a public agency under the joint supervision of the French Ministries for Ecology, Energy, Sustainable Development and Spatial Planning, and for Higher Education and Research. It participates in the implementation of public policies in the fields of the environment, energy and sustainable development. The agency makes its expertise and consultancy skills available to business, local communities, public authorities and the general public and helps them to finance projects in five areas (waste management, soil preservation, energy efficiency and renewable energies, air quality and noise abatement) and to make progress with their sustainable development procedures.

http://www.ademe.fr

2

Contents

SUMMARY
1. BACKGROUND AND OBJECTIVES
2. ORGANISATION AND PARTICIPANTS
3. METHODOLOGY
4. DATA COLLECTED AND EXPERTS' VIEWS
4.1. EMERGING TECHNOLOGIES
4.1.1. Coal IGCC (Integrated Gasification Combined Cycle)
4.1.2. Oxy-combustion
4.1.3. Catalytic combustion
4.1.4. Co-combustion
4.2. IMPROVEMENT OF EXISTING TECHNOLOGIES
4.1.1. Coal-fired power plants
4.1.2. Combined Cycle Gas Turbine (CCGT)
4.1.3. Impact of increased energy efficiency on CO_2 and pollutant emissions
4.1.4. Impact of energy efficiency and plant sizes on costs
4.3. EMERGING ABATEMENT TECHNIQUES
4.3.1. Flowpac (Alstom)
4.3.2. Fine particle abatement techniques
4.3.3. CO ₂ abatement techniques
4.3.4. SOx-NOx-Rox Box (SNRB ™)
4.3.5. Limestone Injection Multistage Burner (LIMB)
4.4. IMPROVEMENT OF EXISTING ABATEMENT TECHNIQUES
4.5. EMERGING APPLICATIONS OF EXISTING ABATEMENT TECHNIQUES
FUTURE WORK
ABBREVIATIONS AND ACRONYMS
ANNEXES

Summary

Outcome of EGTEI work on Emerging Technologies / Techniques for Large Combustion Plants >500 MWth up to 2030

Background

- 1- In the framework of the Convention on Long-Range Transboundary Air Pollution, EGTEI has been mandated by UN ECE to initiate work on emerging technologies in order to assess what could be done technically and economically to reduce atmospheric emissions in the future. Emerging technologies could be considered in different scenarios (BAU, optimisation scenarios). For example, the application of emerging technologies could contribute to lower the emissions of the so-called Maximum Technically Feasible Reductions (MTFR) scenario and hence could reduce the gap still present between the effect level obtained with the MTFR scenario and the no-emissions effect level. The move from RAINS to GAINS, for modelling of emissions impacts, offers the opportunity to improve assessment of the impacts and costs of emerging technologies on emissions reduction over time. A significant improvement in modelling could be achieved by replacing the current assumption, that the efficiency of abatement techniques is constant over time, with information from the technical improvements of existing technologies and abatement techniques.
- 2- An EGTEI expert sub-group (LCP2030 sub-group) dedicated to emerging technologies/techniques and to improvement of existing technologies/techniques, with a time frame up to 2030, has been created by EGTEI for the duration of the work.
- 3- The priority sector considered was the energy sector and especially large combustion plants (LCP) >500 MWth.

Objectives

- 4- The following items were explored by the expert sub-group for providing techno-economic information about:
- a) emerging technologies,
- b) emerging abatement techniques,
- c) emerging applications of existing abatement techniques,
- d) improvement of existing technologies,
- e) improvement of existing abatement techniques.
- 5- Techniques/technologies not yet commercialised, and techniques/technologies in a very early commercialisation phase are considered as emerging. The emissions covered in the framework of the LCP2030 sub-group are: SO₂, NO_x, PM and CO₂.
- **6-** The main objective of the work is to characterise these techniques/technologies technically and economically (emission reduction potential, costs).

Methodology

- 7- On the basis of the IPPC BREF document on large combustion plants and the EU project "Assessment of the air emissions impact of emerging technologies" carried out for the European Commission in 2003/2004 by IFARE and UBA Vienna with the participation of ITA and CITEPA, a list of potential technologies/techniques was established. The list was then reviewed by the experts in order to identify technologies/techniques to be analysed with priority. The information collected came directly from experts of the LCP2030 sub-group or from interviews with other experts.
- **8-** The following sections outline the main views of the experts on the development of emerging technologies/techniques and the improvement of existing technologies/techniques.

4

Emerging technologies

9- Several emerging technologies were explored by the LCP2030 sub-group. Based on expert views and available data, the following emerging technologies were identified as priorities: IGCC and oxy-combustion, two technologies which could benefit from the deployment of Carbon Dioxide Capture and Storage (CCS).

IGCC (Integrated Gasification Combined Cycle)

- **10-** The net efficiency for existing IGCC plants operating on coal is around 43% (LHV basis). IGCC could reach 50% efficiency (LHV basis) around 2015.
- 11- Investment is estimated at between 1 and 1.5 M€/MWth (demonstration plant). A study⁽¹⁾ by the International Energy Agency considers that the specific investment for IGCC is about 20% higher than for pulverised combustion. There is however more uncertainty in IGCC costs as there are no recently built coal IGCC plants and the existing ones were constructed as demonstration plants. Suppliers have plans to bring the capital cost to within 10% of that of pulverised coal combustion.
- 12- The challenges are reliability, availability and investment. According to experts, IGCC technologies could be commercially available around 2020 with CCS.

Oxy-combustion

- **13-** Oxy-combustion enables the capture of CO₂ by direct compression of flue gas without further chemical capture or separation.
- **14-** Optimisation of the competitiveness of the oxy-combustion process for power generation requires several developments:
 - adaptation of cryogenic air separation units for more energy-efficient utilisation and operability for use in large oxy-fuel power plants or development of new oxy-combustion technologies like Chemical Looping combustion,
 - adaptation of combustion technologies to oxygen firing,
 - safe operation under enhanced oxygen firing and carbon dioxide-related safety issues,
 - optimisation of heat transfer in the boiler,
 - optimisation of the steam cycle in order to compensate efficiency loss due to CCS,
 - optimisation of flue gas recirculation.
- **15-** Several 10-50 MW demonstration plants worldwide are planned up to 2010, with 100-500 MW demonstration units possible around 2015. Oxy-combustion technologies could be commercially available around 2020.
- **16-** The reduction of NO_x emissions (on a mass emissions basis) in oxy-combustion processes is mainly due to the very low concentration of N₂ from air in the combustor. The decrease of NO_x formation is then the result of the recirculation of flue gas (interactions between recycled NO_x, fuel-N and hydrocarbons released from fuel).

Improvement of existing technologies

17- One of the ways of reducing the emissions of CO₂ from fossil-fuel-fired power plants is to improve the overall efficiency of plants. Furthermore, because of the penalty of CO₂ capture, CCS makes sense only for highly efficient plants. The following sections outline the main views of the experts on the improvement of existing technologies.

Coal-fired power plants

- **18-** A study⁽¹⁾ from IEA entitled "Fossil fuel-fired power generation case studies of recently constructed coal and gas-fired plants" gives a lot of information on performance and costs of proven technology available today in order to show what has been achieved in modern plants in different parts of the world.
- **19-** Currently, sub-critical coal-fired power plants can achieve efficiencies of up to 40%, and supercritical and ultrasupercritical plants efficiencies of up to 45%. From 2020, coal-fired power plants with advanced steam cycle technology (350 bar, 700°C) could reach efficiency of above 50%. The challenge is the development of materials. These steam cycle conditions would be possible with the use of nickel-based alloys.

⁽¹⁾ IEA - Fossil Fuel-Fired Power Generation - Case studies of recently constructed coal and gas-fired plants, 2007

Combined Cycle Gas Turbine (CCGT)

- **20-** Today the average efficiency of a 400 MWe CCGT plant is about 58%. In 2008 CCGT units with an efficiency of 59.4% were commercially available. An efficiency rate of 62% may be commercially available in 2015. According to experts, as of 2035 CCGT plants should be able to reach commercial efficiency of 70% by improving component efficiencies and using new materials. The efficiency of CCGT units is likely to reach a ceiling of about 72% towards 2050.
- **21-** The increase in efficiency will follow an increase in unit capacity. At present CCGT units (F technology) have a capacity of 430 MWe (in CCGT configuration). Technology of the H generation has a capacity of 530 MWe. Experts project that CCGT units will reach capacities of 600 to 700 MWe in the future.
- **22-** Natural-gas-fired combined cycle technology is more efficient and less expensive than systems based on coal. The investment is split 1/3 for the gas turbine and 2/3 for the steam cycle. Roughly, 2/3 of operating costs come from the gas turbine and 1/3 from the steam cycle.
- **23-** The most recently built plants are able to reach 20 mg/Nm³ (based on a daily average, standard conditions and an O₂ level of 15%) without SCR.

Emerging abatement techniques

- **24-** According to the expert views and the available data, the following emerging abatement techniques were considered by the LCP2030 sub-group as most promising:
 - Flowpac for SO₂ abatement
 - Fine particle abatement techniques
 - CO₂ abatement techniques
 - Oxygen-enhanced low NO_x technology and oxy-combustion for NO_x abatement. For the moment, the data collected for NO_x abatement techniques are not sufficient to draw conclusions.

Flowpac (Alstom)

- 25- Flowpac is a promising end-of-pipe desulphurisation (wet FGD) technology using a bubbling technology instead of circulation pumps. Difficulties and power consumption are minimised by the suppression of recycle pumps, spray nozzles, headers, separate oxidation tanks and thickeners. Power consumption is lower with Flowpac (1.3% of the power capacity) than with the classical wet FGD (1.7/1.75%).
- **26-** The process has a compact design and achieves high desulphurisation rates (>99%) with high sulphur content fuels (>1.5%). The SO₃ abatement efficiency is around 60-70%.
- 27- Flowpac has a low capital cost due to elimination of spray pumps and associated equipment.
- **28-** The system is currently implemented in oil-fired plants (<340 MWe) and needs to be demonstrated with coal-fired plants.

Fine particle abatement techniques

- **29-** COHPAC and TOXECON are technologies developed in the USA to capture emissions such as particulate matter, mercury and dioxins. COHPAC in combination with TOXECON can significantly reduce mercury, sulphur dioxide and other toxic emissions (dioxins) with a lower investment.
- **30-** The Indigo Agglomerator, developed in the USA, agglomerates fine particles with heavy particles to better capture them. The particles are then easily collected in an electrostatic precipitator. A reduction of fine particle emissions by a factor 10 is achieved. It seems that the agglomerator is used only in plants not equipped with wet FGD.

CO2 abatement techniques

31- CO₂ emissions from fossil-fuel-fired power plants can be reduced by energy efficiency improvement or capture of CO₂ that is released and then stored underground.

- **32-** CO₂ capture processes lead to an overall plant efficiency loss estimated to be 8-12 percentage points for existing coal power plants. Due to this efficiency drop with CO₂ capture, increased efficiency of fossil-fuel fired power plants is the first step. In parallel, a priority is the improvement of energy efficiency of CO₂ capture processes and optimisation of the steam cycle for the heat requirements of CO₂ capture.
- 33- There are three types of CO₂ capture processes:
 - post-combustion processes which consist in extracting the CO₂ that is diluted in combustion flue gas. Postcombustion is the most advanced technology today. The solvents for CO₂ post-combustion capture can be physical, chemical or intermediate. Chemical solvents, such as amines, are most likely to be used. Other post-combustion capture solutions are absorption (new solvents, chilled ammonia), adsorption, anti-sublimation, membranes.
 - oxy-combustion processes which consist in burning a fuel in oxygen and recycled flue gas. The gases produced by the oxy-combustion process are mainly water and CO₂, from which CO₂ can easily be removed at the end of the process.
 - pre-combustion processes which involve conversion (gasification or partial oxidation) of fuel into a synthesis gas (carbon monoxide and hydrogen) which is then reacted with steam in a shift reactor to convert CO into CO₂. The process produces highly concentrated CO₂ that is readily removable by physical absorbents. H₂ can then be burned in a gas turbine. For the moment, none of the existing coal-fired IGCC plants includes shift conversion with CO₂ capture.
- **34-** The level and nature of impurities in the CO₂ stream can affect its transport and storage. The CO₂ purity level will impact the choice of pollutant abatement techniques.
- **35-** Some CO₂ processes are also sensitive to pollutants. For example, NO₂ and SO₂ from the flue gas react with amine (post-combustion capture) to form stable, non-regenerable salts and so cause a loss of some amine. With amine, SO₂ specification is usually set as <40 mg/Nm³ and NO₂ specification as <50 mg/Nm³ (based on a daily average, standard conditions and an O₂ level of 6%).

Limits for SO_x can be achieved by some FGD technologies. Experience at the CASTOR⁽¹⁾ pilot plant (post-combustion capture with amine) shows that limestone gypsum flue gas desulphurisation (FGD) plants can be designed to reduce SO₂ emissions down to 10 mg/Nm³ with an increase in capital costs of about 7% and a 27% increase in operating costs.

Limits for NO_x are technically achievable by the use of low-NO_x burners and SCR.

- **36-** Other types of CCS technology are available but not of mature status for application to large combustion plants. CO₂ capture and storage in power plants is now being demonstrated in a few small-scale pilot plants. Large-scale demonstration plants with carbon dioxide capture and storage (CCS) are planned by around 2015 with the objective of developing CCS by 2020.
- **37-** CCS costs are highly project-specific. Many techno-economic studies give information on performance and costs. Nevertheless, data on large-scale CO₂ capture implementation are not available. The objective is to reduce CCS costs to below 25€/t of avoided CO₂ by 2030.

There is no consensus on which option (post, pre or oxy-combustion) will be least costly in the future, each has its pros and cons and the costs appear to be comparable.

Improvement of abatement techniques

- **38-** No significant improvements in existing abatement techniques have been identified compared to the information already available in the European BREF document on LCP. The IEA study⁽²⁾ on fossil-fuel-fired power generation reports some very low emissions for a few recently constructed coal power plants.
- **39-** In order to compare existing data with the modelling data and to update them, costs and performances of abatement techniques at existing installations have been provided by the experts.

Emerging applications of existing abatement techniques

40- Only SO₃ injection was identified as an emerging application of an existing abatement technique to reduce PM emissions.

7

⁽¹⁾ Féraud A, Marocco L, Howard T (2006) CASTOR study of technological requirements for flue gas clean-up prior to CO₂-capture. In: 8th international conference on greenhouse gas control technologies, Trondheim, Norway, 19-22 Jun 2006. Oxford, UK, Elsevier Ltd., paper 01_05_06.PDF, 6p. (2006) CD-ROM

⁽²⁾ IEA - Fossil Fuel-Fired Power Generation - Case studies of recently constructed coal and gas-fired plants, 2007

Other information

41- The increasing cost in relation to net efficiency of power plants and the increasing costs of plants and emissions abatement systems are mentioned by the experts.

Main conclusions and future work

- **42-** The efficiency penalties of CO₂ capture will become lower for future power plants as the trend to higher efficiencies continues, with efficiencies above 50% now in sight.
- **43-** Some technologies/techniques (e.g. catalytic combustion), were considered as outside the scope of the LCP2030 subgroup which considered only power plants with capacities higher than 500 MWth. Future work by the sub-group could consider large combustion plants with lower capacities (e.g. >100 MWth).

1. Background and objectives

In the framework of the Convention on Long-Range Transboundary Air Pollution, EGTEI has been mandated by UN ECE to initiate work on emerging technologies in order to assess what could be done technically and economically to reduce atmospheric emissions in the future. Emerging technologies could be considered in different scenarios (BAU, optimisation scenarios). For example, the application of emerging technologies could contribute to lower the emissions of the so-called Maximum Technically Feasible Reductions (MTFR) scenario and hence could reduce the gap still present between the effect level obtained with the MTFR scenario and the no-emissions effect level. The move from RAINS to GAINS, for modelling of emissions impacts, offers the opportunity to improve assessment of the impacts and costs of emerging technologies on emissions reduction over time. A significant improvement in modelling could be achieved by replacing the current assumption, that the efficiency of abatement techniques is constant over time, with information from the technical improvements of existing technologies and abatement techniques.

Initially, two EGTEI expert sub-groups dedicated to emerging technologies/techniques and improvement of existing technologies/techniques were created by EGTEI, with two time horizons, up to 2020 and a longer-term perspective, between 2020 and 2050. Further to the kick-off meeting, the two expert sub-groups have been merged. Indeed, collecting information for the longer-term horizon is challenging; the future energy production system will probably be very different from what can be imagined now. Consequently an EGTEI expert sub-group (LCP2030 sub-group) dedicated to emerging technologies/techniques and improvement of existing technologies/techniques, with a time frame up to 2030, has been created for the duration of the work.

The priority sector considered was the energy sector and especially large combustion plants (LCP) >500 MWth.

The following items were explored by the expert sub-group for providing techno-economic information about:

- a) emerging technologies
- b) emerging abatement techniques
- c) emerging applications of existing abatement techniques
- d) improvement of existing technologies
- e) improvement of existing abatement techniques.

Techniques/technologies not yet commercialised, and techniques/technologies in a very early commercialisation phase will be considered as emerging. The emissions covered in the framework of the LCP2030 sub-group are: SO₂, NO_x, PM and CO₂.

Two types of measures can be distinguished:

- Primary measures: all measures which allow the reduction or avoidance of possible emissions at the moment of their formation (e.g. low NO_x burner)
- Secondary measures (also called end-of-pipe techniques): all measures which allow the reduction of emissions in the exhaust gas of the processes under consideration (e.g. fabric filter).

Beyond that, combinations of primary and secondary measures may be considered, if their implementation is technically feasible and if a substantial reduction is achievable. Also combinations abating several pollutants at once are possible (e.g. low dust system for NO_x).

The main objective of the work is to characterise these techniques/technologies technically and economically (emissions reduction potential, costs).

2. Organisation and participants

The LCP2030 sub-group is chaired by ADEME and reports to EGTEI.

The kick-off meeting of the EGTEI sub-group on emerging technologies in large combustion plants and power generation was held in Paris (at ADEME's offices), on the 7th of June 2007.

The 2nd meeting was hosted by ADEME in Angers, on the 1st of October 2007.

The 3rd meeting was hosted by ENEA in Brussels, on the 25th of January 2008.

The 4th meeting was hosted by CITEPA in Paris, on the 17th of March 2008.

The 5th meeting was hosted by Swedish EPA in Stockholm, on the 28th of April 2008.

The participants in the LCP2030 sub-group include industrial and national administration experts. The following persons have participated in the work:

Mrs Nadine ALLEMAND (CITEPA) Mr Mark BARRET (UCL University College London) Mr Jean-Guy BARTAIRE (Co-chairman of EGTEI, EDF) Mr Giorgio BILIATO (EDIPOWER s.p.a.)~~aaz~ Mr Phil CAHILL (RWE npower) Mr Pier Lorenzo DELL'ORCO (EDIPOWER s.p.a.) Ms Rima EL HITTI (Ecole des Mines de Paris) Mr Jacek GADOWSKI (BOT Gornictwo i Energetyka SA) Mrs Julie GILLES (MEEDDAT) Mr Gwénaël GUYONVARCH (ADEME) Mr Dave HARRIDGE (ENTEC, representative of DEFRA) Mr Michael HIETE (IFARE) Mr Andrzej JAGUSIEWICZ (Clean Air for Europe - KlinEr) Mr Pierre KERDONCUFF (IFARE) Mr Smerkens KOEN (ECN) Ms Andrea KRIZOVA (Czech Hydrometeorological Institute) Mr Hartmut KRUGER (VGB PowerTech e.V.) Mr Thomas KRUTZLER (Federal Environmental Agency Austria) Mr Mats LINDGREN (Swedish EPA) Mr Peter MEULEPAS (Ministry of the Flemish Region, Environmental Administration) Mrs Carole ORY (EDF) Mr Tiziano PIGNATELLI (Co-chairman of EGTEI, ENEA) Mr Jean-Pierre RIVRON (expert in LCP, formerly EDF) Mrs Dorothée ROSTAL (IFARE) Ms Kristina SAARINEN (Finnish Environment Institute) Mrs Simone SCHUCHT (INERIS) Mrs Nathalie THYBAUD (ADEME) Mr Eric VESINE (ADEME) Mr Julien VINCENT (CITEPA)

3. Methodology

Before the kick-off meeting, a questionnaire was established by ADEME and sent to the experts in order to list the documents or studies which might be useful for the LCP2030 sub-group or which could be used as a basis for the work. The main documents identified are:

- IPPC BREF document on large combustion plants and especially the chapters on emerging techniques.
- EU project "Assessment of the air emissions impact of emerging technologies" carried out for the European Commission in 2003/2004 by IFARE and UBA Vienna with the participation of ITA and CITEPA. The study covered all industrial sectors (excluding transport and agriculture). A list of promising candidate technologies was set up for all sectors, but without projections.
- Documents on Carbon Capture and Storage (CCS): IPCC Special Report on Carbon Dioxide Capture and Storage, Strategic Deployment Document (ETP ZEP), CO₂ Capture Ready Recommendations of European Power Plant Suppliers Association (EPPSA), ...

On the basis of the IPPC BREF document on large combustion plants and the EU project "Assessment of the air emissions impact of emerging technologies" carried out for the European Commission in 2003/2004 by IFARE and UBA Vienna with a participation of ITA and CITEPA, a list of potential technologies/techniques was established.

This list was then reviewed by the experts:

- · technologies/techniques to be analysed with high priority were identified,
- some technologies/techniques were removed from the list, for instance when the technologies/techniques proved to be of no interest (e.g. not in operation anymore) or when they were not within the scope of this sub-group (e.g. applied only below 500 MWth),
- some technologies/techniques were added (often these were technologies that are limited to one or a few countries),
- for some technologies/techniques the name was changed (e.g. from the supplier's product name to a name describing the process),
- contributors of information for technologies/techniques were identified.

The information collected came directly from experts of the LCP2030 sub-group or from interviews with other experts.

4. Data collected and experts' views

4.1. Emerging technologies

Several emerging technologies were explored by the LCP2030 sub-group: coal IGCC, oxy-combustion, catalytic combustion and co-combustion (waste/biomass).

Based on expert views and the available data, IGCC and oxy-combustion were identified as priorities. These two technologies could benefit from the deployment of carbon dioxide capture and storage (CCS).

4.1.1. Coal IGCC (Integrated Gasification Combined Cycle)

Coal IGCC is a combined cycle based on coal gasification and combustion of syngas ($H_2 + CO$) in a gas turbine. The exhaust gases from the gas turbine are then fed into the steam cycle.

Techno-economic data on IGCC are reported in Table 4.1.

The net efficiency for existing IGCC plants operating on coal is around 43% (LHV basis). IGCC could reach 50% efficiency (LHV basis) around 2015.

Investment is estimated at between 1 and 1.5 M \in /MWth (demonstration plant). A study⁽¹⁾ by the International Energy Agency considers that the specific investment for IGCC is about 20% higher than for pulverised coal combustion. There is however greater uncertainty in IGCC costs as there are no recently built coal IGCC plants and the existing ones were constructed as demonstration plants. Suppliers have plans to bring the capital cost down to within 10% of that of pulverised coal combustion.

The challenges are reliability, availability and investment. According to experts, IGCC technologies could be commercially available around 2020 with CCS.

⁽¹⁾ IEA - Fossil Fuel-Fired Power Generation - Case studies of recently constructed coal and gas-fired plants, 2007

Table 4.1 : Techno-economic data on coal IGCC (Integrated Gasification Combined Cycle)

		Environmental impact	al impact					Live d	Wouldhle		
Short description	NO _x emission factor	SO ₂ emission factor	TSP emission factor	CO ₂ emission factor	Technology Efficiency	Maturity	Investment	гіхеа operating costs	variable operating costs	Source of data	Remarks
	g/GJ fuel input	g/GJ fuel input	g/GJ fuel input	kg/GJ fuel input	%		M€/MWth	M€/MWth	M€/MWhth		
585 MWth single unit ⁽¹⁾	11.9 (100 mg/kWhe)	14.3 (120 mg/ kWhe)	not available	92.1 (773 g/ kWhe)	42.9 (LHV basis - based on 90's GT technology)		0.726 ⁽²⁾ (1991) equipment only	0.032 ⁽³⁾ (1999)	5.77E-6 ⁽⁴⁾ (1999)	Edipower (information on Buggenum IGCC plant)	CO ₂ emission factor based on full oxidation of carbon content in a.r. feedstock = 62.83%
670 MWth single unit ⁽⁵⁾	7.88 (66 mg/kWhe)	47.4 (397 mg/ kWhe)	2.39 (20 mg/ kWhe)	96.3 (807 g/ kWhe)	43 (LHV basis - based on 90's GT technology)		1.0 (1998) Including project management, construction and start-up	not available	4.859E-6 (only fuel)	Edipower (from data published by Elcogas Puertollano IGCC plant)	CO ₂ emission factor based on full oxidation of carbon content in a.r. feedstock = 59.21%
	43 ⁽⁶⁾	30 ⁽⁶⁾	4.3 ⁽⁶⁾ (TSP, PM ₁₀ , PM _{2.5})		50 ⁽⁷⁾ (modern IGCC power plant)	Commercially possible but with economic barriers	1.48 ⁽⁷⁾ (2004)			EU-project ⁽⁸⁾ IFARE/UBA 2003/2004	

(1) 1GT+1 dry feed entrained flow slagging gasifier; fed with coal mix (design feed LHV=25 MJ/kg a.r., S=1.5% d.a.f.; integrated ASU (air from GT compressor to ASU, N² from ASU to syngas saturator for NOx primary reduction); additional steam generation by hi-T heat recovery from gasification, after quench with recirculated syngas; syngas clean-up based on hybrid solvent (Sufinol); sulphur recovery by Claus process w/ tail gas incineration

⁽²⁾ Equipment: coal prep. + ASU + gasific. & gas cool. + AGR + SRU + CCPP + CWS + WWT + BOP + DCS

(a) Fixed operating costs: operation personnel only (130 units excluding maintenance personnel: 35 units on average); on yearly basis

⁽⁴⁾ Variable operating costs: Fuel (feedstock + aux. fuel) + utilities & chemicals + by-product disposal

GT combustion chamber for NOx primary reduction); additional steam generation by hi-T heat recovery from gasification, after quench with recirculated syngas; syngas clean-up based on chemical solvent (MDEA); sulphur recovery by Claus process w/ offgas recirculation (a) 1GT+1 dry feed entrained flow slagging gasifier; fed with low rank coal/petcoke mix (design feed LHV=22:55 MJ/kg a.r., S=3:21% a.r.; integrated ASU (N2 from ASU to

(e) European Community, 2003

(7) The Royal Academy of Engineering, 2004

8

EU-project "Assessment of the air emissions impact of emerging technologies" - IFARE/UBA - 2003/2004

4.1.2. Oxy-combustion

 $Oxy-combustion\ enables\ the\ capture\ of\ CO_2\ by\ direct\ compression\ of\ flue\ gas\ without\ further\ chemical\ capture\ or\ separation.$

- Optimisation of the competitiveness of the oxy-combustion process for power generation requires several developments:
- adaptation of cryogenic air separation units for more energy-efficient utilisation and operability for use in large oxy-fuel power plants or development of new oxy-combustion technologies like Chemical Looping combustion,
- · adaptation of combustion technologies to oxygen firing,
- · safe operation under enhanced oxygen firing and carbon dioxide-related safety issues,
- optimisation of heat transfer in the boiler,
- optimisation of the steam cycle in order to compensate efficiency loss due to CCS,
- optimisation of flue gas recirculation.

Several 10-50 MW demonstration plants are planned worldwide up to 2010, with 100-500 MW demonstration units possible around 2015. Oxy-combustion technologies could be commercially available around 2020.

The reduction of NO_x emissions (on a mass emissions basis) in oxy-combustion processes is mainly due to the very low concentration of N_2 from air in the combustor. The decrease of NO_x formation is then the result of the recirculation of flue gas (interactions between recycled NO_x , fuel-N and hydrocarbons released from fuel).

4.1.3. Catalytic combustion

Because of the state of development (pilot-scale 1.5 MWe gas turbine, plants for application on a 170 MWe gas turbine under development), catalytic combustion was considered as outside the scope of this sub-group which looked at plants with capacities larger than 500 MWth.

4.1.4. Co-combustion

Co-combustion plants, which already exist, are not considered as emerging by the experts. Nevertheless, this information is included because this technology is expected to be increasingly important in the future due to CO₂ emissions constraints.

The following tables, extracted from the LCP BREF document, report on experience with the co-combustion of secondary fuel in coal-fired power stations with a wide range of co-firing ratios. Most of these examples involve co-combustion of less than 10% on a thermal basis. References with higher co-combustion rates concern fluidised bed boilers or the co-combustion of separately pulverised wood in pulverised-coal-fired boilers. Large-scale demonstration projects have been carried out with sewage sludge and wood chips.

Country	Power (MWe)	Secondary fuel	Co-firing degree thermal %	Handling of co- combustion fuel	Remarks
Austria	124	Biomass (bark)	3	The boiler has two air- cooled forward pushing grates at the bottom of the boiler with a capacity of 5 MW each	In operation since 1994
	137	Biomass	3	Gasification, gas burners and reburning	Gasified biomass is co-combusted as reburning fuel. In operation since 1997

Table 4.2: Experience with co-combustion in LCPs in Austria

Table 4.3: Experience with co-combustion in LCPs in Denmark

Country	Power (MWe)	Secondary fuel	Co-firing degree thermal %	Handling of co- combustion fuel	Remarks
	77.5	Straw	50	Fluidised bed combustion	Plant designed for coal/straw fuel mix
Denmark	125	Pulverised wood	20	Separate wood burners	Pulverised wood was burned in two specially adapted burners. No negative effects were noticed and it is expected that higher co-firing percentages should be possible. NO _x emissions were reduced by 35% and the quality of fly ash remained good.

Table 4.4: Experience with co-combustion in LCPs in Germany

Country	Power (MWe)	Secondary fuel	Co-firing degree thermal %	Handling of co- combustion fuel	Remarks
	170	Sewage sludge	11		
	195	Sewage sludge	3.5		
	235	Sewage sludge	3.5		
	280	Biomass pellets	max. 10 mass	Separate wood mills, wood burners	The biomass is pulverised in hammer mills and the boiler has a grate at the bottom.
•	382	Sewage sludge	5		
Germany	565	Sewage sludge	0		
	805	Sewage sludge	<0.5		
	913	Sewage sludge	1		
	930	Sewage sludge	5		
	1 074	Sewage sludge	1.5		
	1 280	Sewage sludge	0.07		
	1 933	Sewage sludge	1.1		

Table 4.5: Experience with co-combustion in LCPs in Finland

Country	Power (MWe)	Secondary fuel	Co-firing degree thermal %	Handling of co- combustion fuel	Remarks
Finland	>40 boilers	REF, RDF, selected municipal waste			

Country	Power (MWe)	Secondary fuel	Co-firing degree thermal %	Handling of co- combustion fuel	Remarks
Italy	320 MWe	RDF		Pulverised with coal	RDF is obtained from municipal solid wastes by mean of milling, magnetic separation of metallic material, trommeling and classification to separate organic fraction and inerts
	48 MWth	RDF	10 - 15% based on 33 MWth only	Two solutions : 1) pulverised with coal 2) dedicated feeding line	Co-firing has shown a higher level of unburned matter

Table 4.7: Experience with co-combustion in LCPs in The Netherlands

Country	Power (MWe)	Secondary fuel	Co-firing degree thermal %	Handling of co- combustion fuel	Remarks
	403	Phosphor oven gas Sludge	3	Separate gas burners Pulverised with coal	In operation since 1996 Large-scale tests
	518	Liquid organic residue	1		In operation since 1995
	518	Biomass pellets	5	Pulverised with coal	In operation since 1998
The Netherlands	600	Waste wood	3	Separately milled, wood burners	In operation since 1995
	600	Waste wood	5	Gasification with gas cleaning, gas burners	In commissioning in 2000
	630	Dried sewage sludge	3	Pulverised with coal	Several large scale tests
	645	Paper sludge	max. 10 mass	Pulverised with coal	In operation since 1997

Table 4.8: Experience with co-combustion in LCPs in the US

Country	Power (MWe)	Secondary fuel	Co-firing degree thermal %	Handling of co- combustion fuel	Remarks
		Wood (willow)	max. 10 mass	Separate wood mills, wood burners	
		Wood	max. 5 mass	Pulverised with coal	
	2x25	Wood /RDF	50/15	Bubbling fluidised bed combustion	
US	54	Wood	Max. 40		Short test, natural gas support burner
	100	Wood (saw-dust, lopping)	max. 13.5 mass		Large-scale test, increased excess air, decreased steam temperatures
	350	Refuse-derived fuel	6		
	560	Waste wood	5		Cyclone combustor

Other information from EDIPOWER with a co-firing ratio of less than 10% is reported in table 4.9.

co-combustion	
ic data on co-con	
echno-economic o	
9: Techno-6	
Table 4.	

	Remarks		Unexpected better TSP abatement w/ respect to 100% coal firing (lower ESP efficiency foreseen): this is probably due to increased efficiency of dust abatement by the scrubbers. Reported data are for the boiler with the best environmental performance	Cost data refer to 2007; study not yet completed
	Source of data		Edipower (in part taken from and in part deduced from information published by Enel on an experimental campaign in a power plant in northern Italy)	Edipower (from a feasibility study w/ partnership of KEMA for implementation in a power plant in Italy)
Variable	operating costs	M€/MWhth	not available ⁽³⁾	not available
Fixed	operating costs	M€/MWth	not available	not available
	Investment	M€/MWth	not available ⁽²⁾	0.15 ⁽⁵⁾
Technology	Efficiency	%	35 (LHV basis; no impact from com combustion)	36.5
	CO ₂ emission factor	kg/GJ fuel input	99.5 (103 when 100% coal-fired)	100.5 (more than 10% is attributable to "renewable" thermal input and thus neutral as regards GHG potential; specific CO2 production of wood biomass is 5% greater than that of coal due to lower LHV)
Environmental impact	TSP emission factor	g/GJ fuel input	0.376 (0.959 when 100% coal-fired)	12.76 (no reduction w/ respect to 100% coal firing)
Environme	Environmen SO ₂ emission factor g/GJ fuel input (123.6 (125.2 when 100% coal-fired)			113.3 (slightly increased w/ respect to 100% coal firing due to greater sulphur content in the fuel mix)
	NO _x emission factor	g/GJ fuel input	88.3 (virtually not affected by co- combustion)	72.9 (no reduction w/ respect to 100% coal firing)
	Short description		Co-combustion (coal+RDF) 2x330 MWe ⁽¹⁾ Max use of RDF = 8.2% mass basis	Co-combustion (low ash/low sulphur coal +wood pellets) 1x320 MWe (800 MWth) ⁽⁴⁾ 10% biomass co- firing ratio LHV basis

tangentially fired multi-fuel boilers. Each boiler equipped w/5 burner levels & 5 coal mills. RDF is separately milled and injected downstream coal mills and upstream burners (which are common to the two fuels). Each boiler equipped with ESP+SCR+seawater pre-scrubber + limestone WFGD. Ξ

Average characteristics of RDF: LHV = 18.2 MJ/kg; humidity = 8.55% by wt; ash = 18.4% by wt; S = 0.33% by wt; CI = 0.45% by wt

Characteristics of coal: LHV = 24.3 MJ/kg; S = 0.55% by wt; C = 68.3% by wt

(2) In a study dated 2006 on RDF co-combustion implementation in one 320 MWe Edipower coal fired unit, investment in the range 2.5-3 M€ was estimated for an RDF thermal input of 29.3 MW

(3) SCR, if installed, is to be included in the O&M cost

(a) boiler equipped w/ frontal burners. ESP and DeNOx SCR downstream boiler. Reference fuel characteristics: wood LHV=16.1 MJ/kg; S=0.14%wt; 0.9% ash; 25% moisture; C=46.2% and coal LHV=20.5 MJ/kg; S=0.11%wt; 0.9% ash; 10% moisture; C=56.3%

(a) roughly estimated; referred to "green" thermal input; includes burners modification plus storage and milling/feeding systems modification and integration

4.2. Improvement of existing technologies

One of the ways of reducing CO₂ emissions from fossil-fuel-fired power plants is to improve the overall efficiency of plants. Furthermore, because of the penalty of CO₂ capture, CCS makes sense only for highly efficient plants. The following sections give data and outline the main views of the experts on the improvement of existing technologies.

4.1.1. Coal-fired power plants

A study⁽¹⁾ from IEA entitled "Fossil fuel-fired power generation – case studies of recently constructed coal and gas-fired plants" gives a lot of information on performance and costs of proven technology available today in order to show what has been achieved in modern plants in different parts of the world.

4.2.1.1 Pulverised Combustion (PC)

The following tables, extracted from the IEA study, show the main features of the pulverised-coal-fired plants that were studied and their efficiency, emissions and costs. More information is available in the executive summary (annex 7.1).

Currently, sub-critical coal-fired power plants can achieve efficiencies of up to 40% and supercritical and ultrasupercritical plants efficiencies of up to 45%. From 2020, coal-fired power plants with an advanced steam cycle (350 bar, 700°C) could reach efficiencies of above 50%. The challenge is the development of materials. These steam cycle conditions could be made possible by the use of nickel-based alloys.

⁽¹⁾ IEA - Fossil Fuel-Fired Power Generation - Case studies of recently constructed coal and gas-fired plants, 2007

Table 4.10: Main features of the eight coal-fired plants studied and basis for selection from IEA study entitled "Fossil fuel-fired power generation – case studies of recently constructed coal and gas-fired plants"

Plant	Siting	Coal	MWe net	Boiler geometry	Main suppliers: boiler; turbine	Ultra-super-, super- or sub-crit	Steam conditions MPa/°C/°C(/°C)	Why selected
Europe – Denmark: Nordjyllandsvaerket 3	coastal	international	384	tower	FLS miljo/BWE, Aalborg Industries, Volund Energy Systems; GEC Alsthom (now Alstom)	nsc	29/582/580/580	Most efficient coal plant; double-reheat; very low emissions
Europe – Germany: Niederaussem K	inland	lignite	965	tower	EVT (today Alstom), Babcock and Steinmüller (today HPE); Siemens	nsc	27/580/600	Lignite; top efficiency lignite plant; lignite drier demonstration
North America – Canada: Genesee 3	inland	sub- bituminous	450	2-pass	Babcock-Hitachi	S/C	25/570/570	Sub-bituminous coal; first sliding pressure S/C North America
Asia – Japan: Isogo New Unit 1	coastal	international	568	tower	IHI; Fuji Electric (Siemens)	USC	25/600/610	Very high steam parameters; very low emissions; actived coke regenerable FGD
Asia – Korea: Younghung	coastal	international	2x774	tower	Doosan Heavy Industries & Construction Co.	S/C	25/566/566	Most recent and largest coal-fired units in Korea
Asia – China: Wangqu 1, 2	inland	Chinese lean	2x600	2-pass	Doosan Babcock; Hitachi	s/c	24/566/566	Location; wall-firing of low-volatile coal with low NO _x
Asia – India: Suratgarh 1-5	inland	~30% ash	5x227	2-pass	BHEL	Drum sub-crit	15/540/540	Location; high ash coal; drum boiler
Africa – South Africa: Majuba 1-6	inland	~30% ash	3x669 (wet) 3x669 (wet)	tower	Steinmüller; Alstom	Once-through sub-crit	17/540/540	Location; dry versus wet cooling; high ash coal, once- through sub-critical boiler

USC: ultra-supercritical (steam temperatures of 580° C and above) S/C: supercritical Table 4.11: Costs, emissions and efficiencies of the case-study plants and comments from IEA study entitled "Fossil fuel-fired power generation – case studies of recently constructed coal and gas-fired plants"

Plant	Capital cost; USD/kWso	Achieved emissions at 6% O ₂ , dry	MWe net	Steam conditions MPa/°C/°C(/°C)	Design efficiency, net %, LHV and HHV bases	Annual operating efficiency, net %, LHV and HHV bases	Factors affecting efficiency and other comments
Europe – Denmark: Nordjyllandsvaerket 3	1500 (2006) for new 800MWe excluding owners costs or IDC	NO _x 146 mg/Nm ³ SO ₂ 13 mg/Nm ³ Dust 18 mg/Nm ³	384	29/582/580/580	47 LHV (no heat load) 44.9 HHV (no heat load)	47 LHV (not annual) 44.9 HHV (not annual)	High steam parameters Cold sea water cooling Double reheat Low auxiliary power Extremely low emissions No solid waste for disposal
Europe – Germany: Niederaussem K	1175 (2002) Total project cost	NO _x 130 mg/Nm ³ SO ₂ <200 mg/Nm ³ Dust <50 mg/Nm ³	965	27/580/600	43.2 LHV 37 HHV	43.2 LHV (base load) 37 HHV (base load)	Lignite fuel, 50-60% moisture content High steam parameters Large cooling tower for low condenser pressure Innovative heat recovery systems Low auxiliary power
North America – Canada: Genesee 3	1100 (2005) Overnight cost	NO _x 170 mg/Nm ³ SO ₂ 295 mg/Nm ³ Dust 19 mg/Nm ³	450	25/570/570	41.4 LHV 40 HHV	41 LHV (base load) 39.6 HHV (base load)	Moderately high steam parameters Low auxiliary power First N American sliding pressure supercrit. Sub-bituminous coal
Asia – Japan: Isogo New Unit 1	1800 (2006) Total project cost incl. New Unit 2 under construction	NO, 20 mg/Nm ³ SO ₂ 6 mg/Nm ³ Dust 1 mg/Nm ³	568	25/600/610	42 LHV 40.6 HHV	42 LHV (base load) 40.6 HHV (base load)	High steam parameters Moderately warm sea water cooling Low power Low power Low power Cantary power FGD Extremely low emissions No solid waste for disposal

Table 4.12: Costs, emissions and efficiencies of the case-study plants and comments from IEA study entitled "Fossil fuel-fired power generation – case studies of recently constructed coal and gas-fired plants" (continued)

Plant	Capital cost; USD/kWso	Achieved emissions at 6% O ₂ , dry	MWe net	Steam conditions MPa/°C/°C(/°C)	Design efficiency, net %, LHV and HHV bases	Annual operating efficiency, net %, LHV and HHV bases	Factors affecting efficiency and other comments
Asia – Korea: Younghung	993 (2003) Basis uncertain	NO _x 83 mg/Nm ³ SO ₂ 80 mg/Nm ³ Dust 10 mg/Nm ³	2x774	25/566/566	43.3 LHV 41.9 HHV	41 LHV (capacity factor not known) 39.7 HHV (capacity factor not known)	Moderately high steam parameters Very low emissions Low auxiliary power
Asia – China: Wangqu 1, 2	580 (2006) Overnight cost	NO _x 650 mg/Nm ³ SO ₂ 70 mg/Nm ³ (des) Dust 50 mg/Nm ³	2x600	24/566/566	41.4 LHV 40 HHV	New plant – no operating history	Moderately high steam parameters Low auxiliary power Advanced low-NO _x lean coal combustion system
Asia – India: Suratgarh 1-5	822 (2002) Basis uncertain	SO ₂ unabated Dust 50 mg/Nm ³ (unit 5)	5x227	15/540/540	37.1 LHV 35.1 HHV	33.9 LHV (base load) 32.1 HHV (base load)	Subcritical cycle High ash coal
Africa – South Africa: Majuba 1-6	410 (2001) Total project cost	SO ₂ unabated Dust 50 mg/Nm ³	3x612 (dry); 3x669 (wet)	17/540/540	35-37 LHV 33.8-35.7 HHV	34 LHV (two-shifting) 32.8 HHV (two-shifting)	Subcritical cycle High ash coal Dry cooling from water supply constraints
Europe – United Kingdom: Natural gas plant: Enfield	950 (1999) Total project cost	NO _x 128 mg/Nm ³ SO ₂ negligible Dust zero	373	Advanced GTCC	58 LHV 52 HHV	52 LHV (40% capacity factor) 47 HHV (40% capacity factor)	Combined cycle with reheat gas turbine Low auxiliary power Zero solid waste
IGCC general review	PCC+20%	NO _x 50-75 mg/Nm ³ SO ₂ ~20 mg/Nm ³ Dust <1 mg/Nm ³	300/module	CCC	40-43 LHV 38-41 HHV		Combined cycle Syngas-fired gas turbine Inert solid waste

4.2.1.2 Pressurised Fluidised Bed Combustion (PFBC)

In fluidised bed combustion, coal is mixed with a sorbent and combusted with air in a reaction vessel. The incoming air stream fluidises the reactor contents. Most of the SO₂ produced by the oxidation of the sulphur in the coal is captured by the sorbent. The resultant ash is a dry, benign solid that can be disposed of easily or used in agricultural and construction applications.

Techno-economic data on PFBC are reported in table 4.13.

\sim
ō
E.
ň
q
F
ß
Ť
ĕ
Ξ
P
Š
Ð
Ц
P
Se
÷Ë
Ŋ
S
P
Ð
U
ĒB
Δ
nP
on P
ta on P
ata on P
ta on P
ta on P
ta on P
ta on P
ta on P
ta on P
economic data on P
ta on P
economic data on P
economic data on P
economic data on P
echno-economic data on P
echno-economic data on P
echno-economic data on P
echno-economic data on P
echno-economic data on P
echno-economic data on P

NO _x Short description factor g/GJ fuel input	SO ₂ on emission r factor						Eivo d		
g/GJ fu input		 TSP emission factor	CO ₂ emission factor	Technology Efficiency	Maturity	Investment	operating costs	Variable operating costs	Source of data
	iel g/GJ fuel t input	g/GJ fuel k input	kg/GJ fuel input	%		M€/MWth	M€/MWth	M€/MWhth	
Pressurised fluidised bed 50-80 combustion	80-92	99.9 PM (TSP, PM ₁₀ , PM _{2.5})		40 (72 MW, HKW Cottbus, Germany, 1999)	commercial	1 100 €/kW installed for installed (2005)	0.15 c€/kWe for 450MW installed (2005)		 W. Fichtner, Pulverised Coal Firing, (ultra) supercritical (PCF - USC) - Pressurised Fluidised Bed Combustion (PFBC) - Pressurised Pulverised Coal Combustion (PPCC) - Questionnaire "Assessment of the Air Emissions Impact of Emerging Technologies", personal communication, 2004 Clean Coal Techniques, Coal Power for Progress, World Coal Institute Enzensberger, Norbert (2003) Entwicklung und Anwendung eines Strom- und Zertifikatemarktmodells für den europäischen Enegiesektor, Dissertation an der Universität Karlsruha

4.1.2. Combined Cycle Gas Turbine (CCGT)

A detailed expert view of the evolution of Combined Cycle Gas Turbine technology for electricity production is given in annex 7.2.

Techno-economic data on CCGT from EDIPOWER are reported in table 4.14.

Nowadays, the average efficiency of a 400 MWe CCGT unit is about 58%. In 2008, CCGT plants with an efficiency of 59.4% are commercially available. In 2015, it is possible to consider that an efficiency of 62% could be commercially available. According to experts, in 2035 CCGT plants should be able to reach commercial efficiency of 70% by improving component efficiencies and by using new materials. The efficiencies of CCGT plants should reach a ceiling of about 72% towards 2050.

The increase in efficiency will follow an increase in unit capacity. At present CCGT units (F technology) have a capacity of 430 MWe (in CCGT configuration). Technology of the H generation has a capacity of 530 MWe. Experts foresee that CCGT units could reach capacities of 600 to 700 MWe in the future.

Natural-gas-fired combined cycle technology is more efficient and less expensive than systems based on coal. The investment is split 1/3 for the gas turbine and in 2/3 for the steam cycle. Roughly 2/3 of operating costs come from the gas turbine and 1/3 from the steam cycle.

The most recently built plants are able to reach 20 mg/Nm³ (based on a daily average, standard conditions and an O₂ level of 15%) without SCR.

Table 4.14 : Techno-economic data on Combined Cycle Gas Turbine (CCGT)

		Environn	Environmental impact					Variable		
Short description	NO _x emission factor	SO ₂ emission factor	other (to be specified)	CO ₂ emission factor	Technology Efficiency	Investment	operating costs	variable operating costs	Source of data	Remarks
	g/GJ fuel input	g/GJ fuel input	g/GJ fuel input	kg/GJ fuel input	%	M€/MWth	M€/MWth	M€/MWhth		
1375 MWth. (760 MWe); 2 x GTs size 250 MWe. F class + 1 RH ST w/ ACC	26.7 (173 mg/kWhe)		19.1 (CO) (124 mg/kWhe)	57.7 (374 g/kWhe)	55.5	0.237 (2002)	Not available	Not available	Edipower	
1393 MWth. (793 MWe) repowering of an oil-fired unit by retrofitting the existing common 320 MWe. RH ST w/ WCC; 2 x GTs size 270 MWe. F class	21.3 (design) (135 mg/kWhe)		21.3 (CO) (design) (135 mg/kWhe)	56.1 (355 g/kWhe)	56.9	0.199	Not available	Not available	Edipower	Under commissioning. Plant is equipped with HRSG duct firing, but emissions refer to operation w/o duct firing. Investment, referring to year 2004, includes GT packages, HRSG packages, ST&gen. refurbishment, new DCS, BOP necessary for integration in the existing power station.
679 MWth. (375 MWe) 1 GT size 250 MWe F class + 1 RH ST w/ ACC	28.8 (188 mg/kWhe)		16.4 (CO) (107 mg/kWhe)	56.1 (367 g/kWhe)	55.1	0.247 (2003)	Not available	Not available	Edipower	

4.1.3. Impact of increased energy efficiency on CO2 and pollutant emissions

The following results refer to a study carried out in February 2004, "Concept study reference power plant North Rhine Westphalia (RPP NRW)" and provided by VGB (H. KRUEGER).

The reference efficiency reported for combustion plants in the EU 27 countries is 36%. Improvement due to the application of several techniques could lead to an efficiency of 50%. As a result of lower energy consumption CO₂, NO_x and PM emissions can be reduced.

The impact of increased energy efficiency on CO₂ and pollutant emissions is shown in tables 4.15 and 4.16.

Ő
Ŭ
on a
ıcrease
.=
efficiency increase on (
Š
mpact of energy
f
acto
mp
•••
15
4
Table

Energy content	Short description Pulverised coal	CO ₂ ann Hard co	CO ₂ annual average: 11.307 % Hard coal C content: 84.25%	1.307 % 84.25%	Energy consumption of the technique	lergy consumption of the technique	CO ₂ eq. impact	L autimont at	Invest- ment	Fixed	Variable	
standard coal: 29.3 MJ/kg	combustion, (technical description, type of fuel),	Abatement efficiency	Abated emission factor	Abated emission factor	Electricity	Fossil fuel (to be precised)	(from energy consumption)	Lifetime	for new plants	operating costs	operating costs	Source of data
O ₂ in air: 20.938%	Flue gas conditions: 1013 hPa, 0 °C, 6% O ₂)	%	kg/GJe output	kg/GJ fuel input	kWh/GJ fuel input	MJ/GJ fuel input	tCO ₂ eq./GJ fuel input	hour	M€/MWth	M€/MWth	M€/MWhth	
Emerging abatement techniques												
basis world: 33%	existing 3x200 MWe	-8.33%										
basis EU 27: 36%	existing 2x300 MWe	basis	3542.15	1275.17								
Effic. improvement: 45.90%	RPPNRW 600MWe	27.50%	2778.15	No change	10		0.007	200 000	0.396	0.058M€ /year	0.044M€ /year	VGB 2003
47.30%	RPPNRW 600MWe coal	31.39%	2695.93	No change					0.417		0.0434M€ /year	VGB 2003
20%	AD 700	%68 [.] 8£	2550.35	No change								
basis world: 50%	AD 700	51.52%	3864.16									
56%	IGCC next step	55.56%	2277.09	No change								
basis world: 50%	AD 700	%07.69										

Energy content	Short description				Impact on	Impact on pollutant emissions	issions			
standard coal: 29.3	Pulverised coal	TSP annu	TSP annual average: 10 mg/m³) mg/m³	NO _x annuɛ	NO _x annual average: 100 mg/m³	0 mg/m³	SO ₂ annus	SO ₂ annual average: 150 mg/m³) mg/m³
Bylow 2880 OC -reis of O	(technical (technical description, type of fuel),	Abatement efficiency	Abated emission factor	Abated emission factor	Abatement efficiency	Abated emission factor	Abated emission factor	Abatement efficiency	Abated emission factor	Abated emission factor
	conditions: 1013 hPa, 0 °C, 6% O ₂)	%	g/GJe output	g/GJ fuel input	%	g/GJe output	g/GJ fuel input	%	g/GJe output	g/GJ fuel input
Emerging abatement techniques										
basis world: 33%	existing 3x200 MWe									
basis EU 27: 36%	existing 2x300 MWe	EU basis	109.02	39.25	EU basis	1090.20	392.47	EU basis	1635.30	588.71
Effic. improvement: 45.90%	RPPNRW 600MWe	27.50	85.51	No change	27.50	855.06	No change		1282.59	No change
47.30%	RPPNRW 600MWe coal	31.39	82.98	No change	31.39	829.75	No change		1244.63	No change
%05	AD 700	38.89	78.49	No change	38.89	784.95	No change		1177.42	No change
basis world: 50%	AD 700		118.93			1189.31			1783.97	
%95	IGCC next step	55.56	70.08	No change	55.56	700.84	No change	55.56	1051.27	
basis world: 50%	AD 700									

Table 4.16 : Impact of energy efficiency increase on polluant emissions

4.1.4. Impact of energy efficiency and plant sizes on costs

The cost increases related to net efficiency of power plants and the impact of plant sizes on the cost of reduction techniques (SCR, FGD) are presented in the report by Jean-Pierre RIVRON entitled "Technical and economical data on depollution systems" in annex 7.3.

4.3. Emerging abatement techniques

Several emerging abatement techniques were explored by the LCP2030 sub-group: Flowpac, limestone injection multistaged burner (LIMB), SO_x-NO_x-Rox-Box (SNRB), fine particle collector and CO₂ abatement techniques.

According to the expert views and the available data, the following emerging abatement techniques were considered by the LCP2030 sub-group as most promising:

- Flowpac for SO₂ abatement
- Fine particle abatement techniques
- CO₂ abatement techniques.

4.3.1. Flowpac (Alstom)

Flowpac is a promising end-of-pipe desulphurisation (wet FGD) technology using a bubbling technology instead of circulation pumps.

Difficulties and power consumption are minimised by the suppression of recycle pumps, spray nozzles, headers, separate oxidation tanks and thickeners. Power consumption is lower with Flowpac (1.3% of the power capacity) than with classical wet FGD (1.7/1.75%).

The process has a compact design and achieves high desulphurisation rates (>99%) with high sulphur content fuels (>1.5%). SO₃ abatement efficiency is around 60-70%.

Flowpac has a low capital cost due to elimination of spray pumps and associated equipment. In 2003, the investment for Flowpac technology for desulphurisation of two 600MWe coal units was $58 \in /kWe$ (70 M \in for 2x600MWe coal units). This cost was 6% lower than for classical wet desulphurisation (61 \in /kWe ; 74 M \in for 2x600MWe coal units).

The system is currently implemented in oil-fired plants (<340MWe) and needs to be demonstrated with coal-fired plants.

For more information see annex 7.3 "Report on technical and economical data on depollution systems" (Jean-Pierre RIVRON, March 2008).

4.3.2. Fine particle abatement techniques

COHPAC and TOXECON are technologies developed in the USA to capture emissions such as particulate matter, mercury and dioxins. COHPAC in combination with TOXECON offers the ability to significantly reduce mercury, sulphur dioxide and other toxic emissions (dioxins) at a lower investment cost.

The Indigo Agglomerator, developed in the USA, agglomerates fine particles with heavy particles to better capture them. The particles are then easily collected in an electrostatic precipitator. A reduction of fine particle emissions by a factor of 10 is achieved. It seems that the agglomerator is used only in plants not equipped with wet FGD.

For more information see annex 7.3 "Report on technical and economical data on depollution systems" (Jean-Pierre RIVRON, March 2008).

4.3.3. CO₂ abatement techniques

 CO_2 emissions from fossil-fuel-fired power plants can be reduced by energy efficiency improvement or capture of CO_2 that is released and then stored underground.

 CO_2 capture processes lead to an efficiency loss estimated to be 8-12 percentage points for existing coal power plants. Due to the efficiency drop with CO_2 capture, increasing the efficiency of fossil-fuel-fired power plants is the first step. In parallel, a priority is the improvement of the energy efficiency of CO_2 capture processes and optimisation of the steam cycle for the heat demands for CO_2 capture.

There are three types of CO₂ capture processes:

- Post-combustion processes which consist in extracting the CO₂ that is diluted in the combustion flue gas. Post-combustion is the most advanced technology today. The solvents for CO₂ post-combustion capture can be physical, chemical or intermediate. Chemical solvents, such as amines, are most likely to be used. Other post-combustion capture solutions are absorption (new solvents, chilled ammonia), adsorption, anti-sublimation, membranes.
- Oxy-combustion processes which consist in burning a fuel in oxygen and recycled flue gas. The gases produced by the oxycombustion process are mainly water and CO₂, from which CO₂ can easily be removed at the end of the process.
- Pre-combustion processes which involves conversion (gasification or partial oxidation) of fuel into a synthesis gas (carbon monoxide and hydrogen) which is then reacted with steam in a shift reactor to convert CO into CO₂. The process produces highly concentrated CO₂ that is readily removable by physical absorbents. H₂ can then be burned in a gas turbine. For the moment, none of the existing coal-fired IGCC plants includes shift conversion with CO₂ capture.

The level and nature of impurities in the CO₂ stream can affect its transport and storage. The CO₂ purity level will impact the choice of pollutant abatement techniques.

Some CO₂ processes are also sensitive to pollutants. For example, NO₂ and SO₂ from flue gas react with amine (post-combustion capture) to form stable, non-regenerable salts and so cause a loss of some amine. With amine, SO₂ specification is usually set as <40 mg/Nm³ and NO₂ specification as <50 mg/Nm³ (based on a daily average, standard conditions and an O₂ level of 6%).

Limits for SO_x can be achieved by some FGD technologies. Experience at the CASTOR⁽¹⁾ pilot plant (post-combustion capture with amine) shows that limestone gypsum flue gas desulphurisation (FGD) plants can be designed to reduce SO₂ emissions down to 10 mg/Nm³ with an increase in capital costs of about 7% and a 27% increase in operating costs. Limits for NO_x are technically achievable by the use of low-NOx burners and SCR.

Other types of CCS technology are available but not of mature status for application to large combustion plants. For example, a new technology for CO_2 capture by anti-sublimation, was presented by Ms Rima EL HITTI of the Ecole des Mines de Paris (cf. annex 7.8). It is based on the principle that CO_2 anti-sublimates at a cold surface with a temperature of about -110°C.

CO₂ capture and storage in power plants is now being demonstrated in a few small-scale pilot plants. Large-scale demonstration plants with carbon dioxide capture and storage (CCS) are planned by around 2015 with the objective of developing CCS by 2020.

CCS costs are highly project-specific. Many techno-economic studies give information on performance and costs. Nevertheless, data on large-scale CO₂ capture implementation are not available. The objective is to reduce CCS costs to below $25 \in /t$ of avoided CO₂ by 2030.

There is no consensus on which option (post, pre or oxy-combustion) will be least costly in the future, each has pros and cons and the costs appear to be comparable.

The efficiency penalties of CO₂ capture will become lower for future power plants as the trend to higher efficiencies continues, with efficiencies above 50% now in sight.

⁽¹⁾ Féraud A, Marocco L, Howard T (2006) CASTOR study of technological requirements for flue gas clean-up prior to CO2-capture. In: 8th international conference on greenhouse gas control technologies, Trondheim, Norway, 19-22 Jun 2006. Oxford, UK, Elsevier Ltd., paper 01_05_06.PDF, 6p. (2006) CD-ROM

4.3.4. SO_x-NO_x-Rox Box (SNRB[™])

The SO_x-NO_x-Rox Box process combines hydrated lime and ammonia injection upstream of a hot catalytic baghouse (box) where the solid product – calcium sulphite and sulphate – and particulates (Rox) are removed, and the NO_x is reduced to nitrogen and water.

The SNRB process has proven to be a highly efficient control system for SO₂, NO_x and particulates. Typical performances are 80-90% SO₂ removal, 90% NO_x removal and 99.99% particulates removal.

Commercialisation of the technology is expected to develop with an initial larger-scale application equivalent to 50-100MWe.

SNRB was not considered by the experts as promising mainly due to the hazardous waste by-product.

Data on SNRB from IFARE are reported in table 4.17.

	Source of data Remarks			B&W technical paper, Paul S. Nolan, Flue Gas Desulphurization Technologies for Coal-fired Power Plants, January 2000. U.S Department of Energy, Assistant Secretary for Fossil Energy, EPRI, Clean Coal Technology reguivalent to 50- Assistant Secretary for Fossil Energy, EPRI, Clean Coal Technology Programs – Program Update 2003, December 2003
	Variable operating costs		M€/MWhth	
	Fixed operating costs		M€/MWth	
	Investment		M€/MWth	
	Maturity			pilot
sions	Other pollutant (to be specified)	Abatement Abatement efficiency efficiency	%	HF 84 HCL 95
Impact on other emissions	TSP	Abatement efficiency	%	66.66
Impact o	SO2	Abatement efficiency	%	80-90
	NO _x	Abatement efficiency	%	06
	Short description			SO _x -NO _x -Rox-Box (SNRB)

Table 4.17 : Data on SNRB

4.3.5. Limestone Injection Multistage Burner (LIMB)

Initially, limestone was injected through staged low-NO_x burners. Studies have shown that moderate levels of SO₂ emission control were possible by injecting sorbent within certain windows, according to the boiler's time temperature profile.

Data on LIMB from IFARE are reported in table 4.18.

LIMB was not considered by the experts as promising as it has problems in terms of reliability and mediocre abatement efficiency.

Ω
2

_
Ē
0
m
E.
aj
õ
••
00
<u></u>
4
d)
<u> </u>
Р
Ъ.

_

		Impact	Impact on other emissions	ssions						
Short description	Ň	SO ₂	TSP	Other pollutant (to be specified)	Maturity	Investment	Fixed operating costs	Variable operating costs	Source of data	Remarks
	Abatement efficiency	Abatement Abatement Abatement efficiency efficiency	Abatement efficiency	Abatement efficiency						
	%	%	%	%		M€/MWth	M€/MWth	M€/MWhth		
Limestone Injection Multistage Burner (LIMB)	40-50	65-70			demonstration				B&W technical paper, Paul S. Nolan, Flue Gas Desulphurization Technologies for Coal-fired Power Plants, January 2000. U.S Department of Energy, Assistant Secretary for Fossil Energy, EPRI, Clean Coal Technology Programs – Program Update 2003, December 2003	LIMB has been sold to an independent power plant in Canada. The low-NO _x burners have an estimated value of 388 million dollars.

4.4. Improvement of existing abatement techniques

No significant improvements in existing abatement techniques have been identified compared to the information already available in the European BREF document on LCP. The IEA study on fossil-fuel-fired power generation reports some very low emissions for a few recently constructed coal power plants.

In order to compare existing data with the modelling data and to update them, costs and performances of abatement techniques at existing installations have been provided by the experts (Tables 4.19, 4.20, 4.21, 4.22).

						Impact on other emissions	er emissions		_	
	Short description	NOX	ň	SO ₂	02	TSP	e.	Other pollutant (to be precised)	ollutant ecised)	
	(technical description, type of	Abatement efficiency	Abated emission factor	Abatement efficiency	Abated emission factor	Abatement efficiency	Abated emission factor	Abatement efficiency	Abated emission factor	Source of data
		%	g/GJ fuel input	%	g/GJ fuel input	%	g/GJ fuel input	%	g/GJ fuel input	
Improvement of existing abatement techniques										
SCR conventional boiler	2x160 MWe existing units retrofitted w/ Hi- dust SCR reagent: NH ₃ 25% in water	89 (design)	28.1 (emission) (284g/MWhe)	0.5-1% conversion SO ₂ to SO ₃						Edipower Power plant Italy
	design fuel: oil 3% S		225 (abated)							
Air staging (burners out of	4x160 MWe existing units retrofitted w/ BOOS	55	112 (emission) (1125g/MWhe)							Edipower Power plant
service-BOOS)	operating fuel: oil 1% S		140 (abated)							Italy
SCR for gas combined cycle -	CCPP w/ 2xGT 250 MWe size F class	50 (design)	16.4 (design)							Edipower Power plant
downstream GT	Fuel: natural gas									Italy

Table 4.19 : Techno-economic data on NOx abatement techniques

	Short	Energy consumption of the technique	umption				E	Variabla		
	description (technical description,	Electricity	Fossil fuel (to be precised)	corsumption)	Equipment lifetime	Investment	operating costs	variable operating costs	Source of data	Remarks
	type of fuel,)	kWh/GJ fuel input	MJ/GJ fuel input	tCO2/GJ fuel input	year	M€/MWth	M€/MWth	M€/MWhth		
Improvement of existing abatement techniques										
SCR conventional boiler	2x160 MWe existing units retrofitted w/ Hi-dust SCR reagent: NH ₃ 25% in water design fuel: oil 3% S	0.25 (including increase of ID fan power which impacts almost 90%)		1.846E-4 (based on: power plant net efficiency=36%; 85% Carbon content; LHV=41.9 MJ/kg)	design 30	0.0238		3.36E-7	Edipower Power plant Italy	SCR retrofit under construction variable costs based on ammonia 25% water solution unit cost = 225 €/t
Air staging (burners out of service-BOOS)	4x160 MWe existing units retrofitted w/ BOOS operating fuel: oil 1% S				operating since 6 yrs	0.00012			Edipower Power plant Italy	investment is an estimate Operating system retrofitted (6yrs track record)
SCR for gas combined cycle - downstream GT	CCPP w/ 2xGT 250 MWe size F class Fuel: natural gas	0.121 (almost 90% due to increase in GT backpressure due to SCR installation)		4.44E-4 (based on: power plant net efficiency=55%; 71.6% carbon content; LHV=46.8 MJ/kg)	design 30	0.0044		2.04E-8 (reagent)	Edipower Power plant Italy	Tender (project not executed) Variable costs based on ammonia 25% water solution unit cost = $180 \notin lt$

		Source of data			Edipower Power plant Italy
	ollutant ecised)	Abated emission factor	g/GJ fuel input		
	Other pollutant (to be precised)	Abatement efficiency	%		
Impact on other emissions	TSP	Abated emission factor	g/GJ fuel input		
Impact on ot	1	Abatement efficiency	%		not available (heavily influenced by particulate load and size at entry). From a study by CRIEPI of Japan datd 1987 on operating power stations, removal efficiency is just over 90% only for particulate size greater than 2 microns.
	×	Abated emission factor	g/GJ fuel input		
	^x ON	Abatement efficiency	%		0.5-1% conversion SO ₂ to SO ₃
	SO ₂	Abated emission factor	g/GJ fuel input		56.3 (emission) (568g/MWhe)
		Abatement efficiency	%		95.8 (design)
	Short description	(technical description, type of fuel			single FGD (common absorber w/ 3 spray levels) downstream 2 units 160MWe each each design fuel: oil 3% S; absorbent: limestone slurry
				Improvement of existing abatement techniques	Wet lime/limestone scrubber

Table 4.20 : Techno-economic data on SO2 abatement techniques

Edipower Power plant Italy	Edipower Power plant East EU	Edipower Power plant Italy
	13.8 (emission) (158g/MWhe)	5.36 (emission) 46.6 (abated)
>90% on average (also submicronic); less influenced by particulate removal efficiency (as removal efficiency (as resulting from mentioned the study of Japan Central Research Inst. for Electr. Power Industry).	50% (design)	88.50%
56.3 (emission) (568g/MWhe) 1346 (abated)	184 (emission) (2077g/MWhe)	71.5 (emission) 363 (abated)
95.8 (design)	95.8 (design)	98.2 (design)
Single FGD downstream 2 units 160 MWe each; design fuel: oil 3% S; absorbent: limestone slurry	2x300 MWe conventional lignite fired units each equipped w/ 2 ESP in parallel and 1 limestone WFGD; design fuel LHV = 5.024 MJ/kg AF; design fuel S content = 2.39%	2x320 MWe Conventional coal fired units. Fuel switched from about 1% to about 0.1% Sulfur content (and to less than 1% ash content)
Jet Bubbling Reactor	Wet lime/limestone scrubber	Low Sulphur/Ash Fuel

Table 4.21 : Techno-economic data on SO2 abatement techniques (continued)

	1	Energy consumption of the technique	umption nique	CO ₂ eq. impact	Fourinment		Fixed	Variable		
	snort description (technical description, type of finel	Electricity	Fossil fuel (to be precised)	(from energy consumption)	lifetime	Investment	operating costs	operating costs	Source of data	Remarks
	(kWh/GJ fuel input	MJ/GJ fuel input	tCO2/GJ fuel input	year	M€/MWth	M€/MWth	M€/MWhth		
Improvement of existing abatement techniques										
Wet lime/limestone scrubber	single FGD (common absorber w/ 3 spray levels) downstream 2 units 160MWe each design fuel: oil 3% S: absorbent: limestone slurry	1.37 (included increase in ID fan power consumption that impacts about 55%)		10.04E-4 (based on a power plant net efficiency of 36% and on a 83% Carbon content in the fuel and a fuel LHV=41.9 MJ/kg)	design 30	0.043 (estimated as part of an EPC LSTK contract LSTK contract including DeSO _x and DeNO _x ; includes also GGH beyond WFGD system)		3.3714E-7 (CaCO ₃ consumption)	Edipower Power plant Italy	Retrofit project under execution To produce gypsum pursuant to Eurogypsum quality requirements, particulate capture inside absorbers is not desiderable.

Jet Bubbling Reactor	Single FGD downstream 2 units 160 MWe each; design fuel: oil 3% S; absorbent: limestone slurry	1.508 (included increase in ID fan power consumption that impacts about 68%; slurry preparation not included)	 11.05E-4 (based on a power plant net efficiency of 36% and on a 83% Carbon content in the fuel and a fuel LHV=41.9 MJ/kg)	design 30	0.045 (estimated as part of an EPC LSTK contract including DeSO _x and DeNO _x ; includes also GGH beyond WFGD system)	3.3714E-7 (CaCO ₃ consumption)	Edipower Power plant Italy	Tender; project not executed In this type of application (one common FGD for two boilers) JBR could have lower power consumption at part load
Wet lime/limestone scrubber	2x300 MWe conventional lignite fired units each equipped w/ 2 ESP in parallel and 1 limestone WFGD; design fuel LHV = 5,024 MJ/kg AF; design fuel S content = 2.39% AF	 4.03 (included limestone slurry preparation that impacts about 10 %; ID fan not included) 	8.066E-3 (based on complete oxydation of 16% C by wt in the fuel and on a net power plant efficiency of 31.8%)	design 30	0.03148	2.04E-8 (reagent)	Edipower Power plant East EU	Project under execution Cost referred to 2005
Low Sulphur/Ash Fuel	2x320 MWe Conventional coal fired units. Fuel switched from about 1% Sulfur content (and to less than 1% ash content)		9E-3 (based on different specific Carbon content of the fuels: 28.45% low S/ash coal vs 25,98% old coal)	Since 6 years			Edipower Power plant Italy	

		Source of data			Edipower Power plant Italy	Edipower Power plant Italy	Edipower Power plant East EU
	llutant ecised)	Abated emission factor	g/GJ fuel input				
	Other pollutant (to be precised)	Abatement efficiency	%				
er emissions	×	Abated emission factor	g/GJ fuel input				
Impact on other emissions	NOx	Abatement efficiency	%				
	2	Abated emission factor	g/GJ fuel input				
	SO ₂	Abatement efficiency	%				
	TSP	Abated emission factor	g/GJ fuel input		6.47 (emission) 36.58 (abated)	4.34 (emission) 4336 (abated)	27.6 (emission) 31360 (abated)
		Abatement efficiency	%		85% (82.5% design)	99.9% (design)	99.9% (design)
	Short	description (technical description,			4x160 MWe units; one ESP (3 fields - abatement surface: 7600 m ²) on each unit; fuel: oil 1% Sulphur	2 unitsx320 MWe coal fired power plant (max 1% S)	2x300 MWe conventional lignite fired units each equipped w/ 2x3-fields-ESP in parallel and 1 limestone WFGD; design fuel LHV = 5.024 MJ/kg AF; design fuel S content = 2.39% AF
				Improvement of existing abatement techniques	ESP	Fabric Filters	E S B

Table 4.22 : Techno-economic data on PM abatement techniques

	Short	Energy c	Energy consumption of the technique	CO ₂ eq. impact	T ann ann ann ann ann ann ann ann ann ann		Fixed	Variable		
	description (technical description.	Electricity	Fossil fuel (to be precised)	(trom energy consumption)	lifetime	Investment	operating costs	operating costs	Source of data	Remarks
	type of fuel,)	kWh/GJ fuel input	MJ/GJ fuel input	tCO ₂ /GJ fuel input	year	M€/MWth	M€/MWth	M€/MWhth		
Improvement of existing abatement techniques										
ESP	4x160 MWe units; one ESP (3 fields - abatement surface: 7600 m ²) on each unit; fuel: oil 1% Sulphur	0.132		9.7E-5	6 (operation) design 30	0.0133			Edipower Power plant Italy	These ESP's are in operation since year 2003
Fabric Filters	2 unitsx320 MWe coal fired power plant (max 1% S)	0.46 (mainly ID fan)		4.46E-4 (based on 62% C in the fuel; LHV=23.86 MJ/kg; net plant efficiency=35.7%)	design 30	0.008235			Edipower Power plant Italy	Tender for a project of conversion of the existing ESP's with FF's in order to increase the abatement efficiency. Cost is referred to 2003 and is based on maintaining filter casing.
ESP	2x300 MWe conventional lignite fired units each equipped w/ 2x3-fields-ESP in parallel and 1 limestone WFGD; design fuel LHV = 5.024 MJ/Kg AF; design fuel S content = 2.39% AF	0.31		6.20E-4 (based on: power plant net efficiency=55%; 71.6% carbon MJ/kg) MJ/kg)	design 30	0.0062			Edipower Power plant Italy	Project under execution: cost referred to 2005. Reported TSP emission is the one downstream ESP (further 50% reduction expected in WFGD absorber).

4.5. Emerging applications of existing abatement techniques

SO₃ injection upstream of a precipitator was the only technology identified as an emerging application of an existing abatement technique to reduce PM emissions.

For more information see annex 7.3 "Report on technical and economical data on depollution systems", Jean-Pierre RIVRON, March 2008.

Future work

Some technologies/techniques (e.g. catalytic combustion) were considered as outside the scope of the LCP2030 subgroup which considered only power plants with capacities higher than 500 MWth. Future work by the sub-group could consider large combustion plants with lower capacities (e.g. >100 MWth).

Abbreviations and acronyms

Air-Cooled Condenser
Acid Gas Removal
Air Separation Unit
Burner out of service
Balance of Plant
Reference Document on Best Available Techniques (IPPC)
Combined Cycle Gas Turbine
Combined Cycle Power Plant
Carbon dioxide Capture and Storage
Cooling Water Supply
Distributed Control System
Electrostatic precipitator
Fabric Filter
Flue Gas Desulphurisation
Gas Turbine
Higher Heating Value
Heat Recovery Steam Generator
International Energy Agency
Integrated Gasification Combined Cycle

IPPC	Integrated Pollution Prevention and Control
LCP	Large Combustion Plant
LIMB	Limestone Injection Multistaged Burner
LHV	Lower Heating Value
MDEA	Methyl Di-Ethyl Amine
PC	Pulverised Combustion
PFBC	Pressurised Fluidised Bed Combustion
RDF	Refuse Derived Fuel
REF	Recovered Fuel
RH	Re-Heater
SCR	Selective Catalytic Reduction
s/c	Supercritical
SNRB	SOx-NOx-Rox Box
SRU	Sulphur Removal Unit
ST	Steam Temperature
USC	Ultra-supercritical
WFGD	Wet Flue Gas Desulphurisation
WWT	Waste Water Treatment
WCC	Water-Cooled Condenser