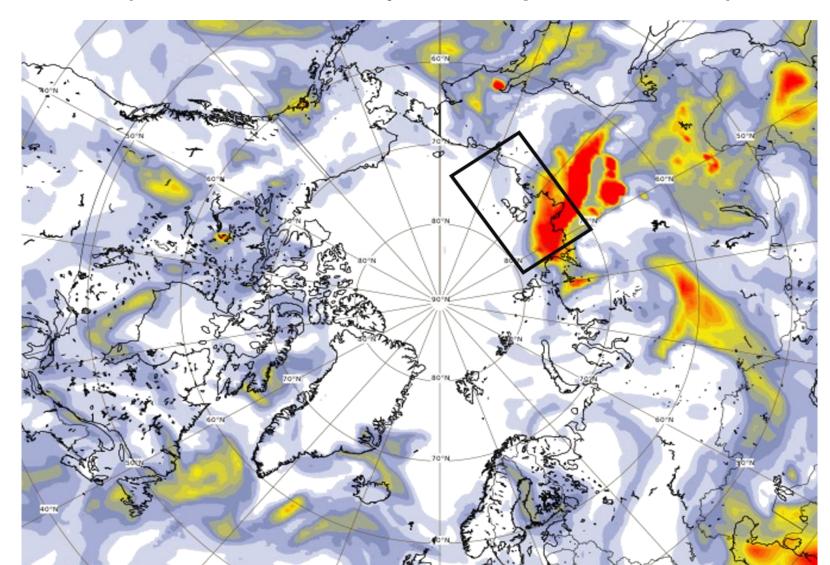


Review of TFTEI Guidance Document on Agricultural Residue Burning

Pam Pearson, Co-Chair, CCAC Agriculture Initiative And Director, ICCI

INTERNATIONAL CRYOSPHERE CLIMATE INITIATIVE www.iccinet.org www.openburning.org

Definition and Types of Fire Use: "Agricultural Residue Burning" (ARB)


- Use of fire for any purpose in agro-forestry sector:
 - ✓ Burning of crop stubble prior to next planting
 - ✓ Clearing of weeds/parasites in fields or orchards
 - ✓ Clearing of land for cultivation ("first use;" reclaiming; slash-and-burn)
 - ✓ Pasture burning to "renew" grass
 - Clearing of understory prior to lumber harvest
 - ✓ *Wildfires* that spread from all of the above
 - ✓ Does NOT include ecosystem-based and cultural burns on wildlands; nor emergency fire prevention
- Important: For mitigation purposes, consider primary fire source, not lands burning: so inventories should include wildfires that spread from the original fire

Impacts

- HEALTH:
 - Higher mortality from respiratory/cardiac illness, despite episodic nature
 - Increasingly a primary pollution source, especially as other sources decrease and wildfire risks increase in warmer/drier climate
- ENVIRONMENT
 - Also water pollution and biodiversity loss
 - Soil degradation and erosion
- CLIMATE
 - Largest BC source (when all ARB-origin fires included, also wildfires)
 - Large OC portion less relevant in reflective Arctic
- CROP YIELDS/FOOD SECURITY
 - Decreases yields/increases fertilizer needs 20-35%
 - Brittle, nutrient-depleted (including C) soils

Record Arctic Circle Fire Emissions 2019 and 2020

Fires and Smoke Transport Over Arctic Ocean, July 12, 2020 (estimated that nearly all fires spread from ARB)

Reducing ARB Emissions: Alternatives

- Good BAP and BAT (or "good practices") nearly always exist, but very crop- and ecosystem specific
- Crop Stubble:
 - Low-Till: Incorporate stubble into soil (earliest alternative in EU)
 - No-till/direct seed: Plant through stubble
 - Conservation agriculture: No-till suite with cover crops, often manure injection, etc – strong adaptation benefits by further lowering water use and soil erosion
 - "Harvest" and monetize straw: bio-energy (esp with manure), bedding, fodder
- Pasture: Harvest for hay (burning annually does not "fertilize")

Alternatives to ARB

- Clearing Fallow Lands: Mechanical removal, mulching and incorporation (some single machine technology, such as "The Beast" cutter and mulcher)
- Forest Understory:
 - Mechanical removal, "forest mulching" and incorporation;
 - Removal for production of bio-energy (pellets, wood chips)
 - > Pile burning if good control possible
- > Orchard Understory: Mow and mulch, similar co-benefits to low-till
- Importance of farmer-supportive measures (extension services, financing, subsidies etc.) in addition to regulatory measures

International Cryosphere Climate Initiative

Monitoring and Potential Emissions Inventories Greatly Improved: 2017 Fire Emissions in Cropland-Dominated Landscapes (375 m VIIRS NH Active Fire Detections)

Rank	Country	BC CO2		CH4	Rank	Country	BC	CO2	
L	China	23,435	49,525,771	181,855	21	Hungary		103	21
2	Russian Federation	15,503	32,763,177	120,304	22	Czechia		52	10
3	Ukraine	7,588	16,035,270	58,880	23	Denmark		47	ç
4	United States	5,298	11,195,690) 41,110	24	Netherlands		42	ξ
5	Kazakhstan	1,758	3,714,738	3 13,640	25	Portugal		22	2
6	Canada	1,429	3,020,158	3 11,090	26	Luxembourg		7	1
7	Italy	1,395	2,947,870	10,824	27	Lithuania		5	
8	Turkey	1,226	2,590,035	5 9,510	28	Latvia		2	
9	Romania	930	1,964,414	7,213	29	Mongolia		1	
10	Germany	696	1,471,160	5,402	30	Sweden		1	
11	Bulgaria	509	1,074,753	3,946	31	Estonia		0.4	
12	Spain	412	869,959	3,194	32	Slovenia		0.3	
13	France	328	693,470) 2,546	33	Finland		0	
14	Poland	314	663,222	2,435	33	Ireland		0	
15	Belgium	258	545,979	2,005	33	Malta		0	
16	Croatia	232	489,924	l 1,799	33	Norway		0	
17	Greece	207	437,199	9 1,605	33	Iceland		0	
18	Austria	171	361,720) 1,328					
19	United Kingdom	170	358,528	3 1,316				It all	
20	Slovakia	162	341,879) 1,255				Itali	CS: I

Italics: EU 26 (Metric tonnes)

CH4

798

400

363

323

168

55

36

13

9

6 3

2

0 0

0

0 0

217,282

108,918

98,790

87,967

45,649

14,985

9,712

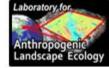
3,469

2,497

1,526

832

555


0

0

0 0

0

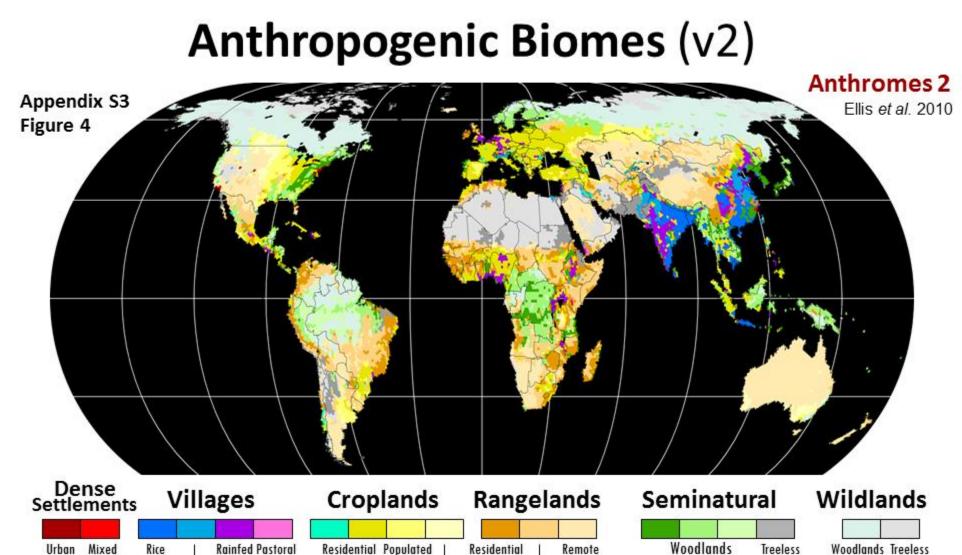
Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N. 2010. Anthropogenic transformation of the biomes, 1700 to 2000 *Global Ecology and Biogeography* 19:589-606.

& Barren

Remote

Populated

Residential

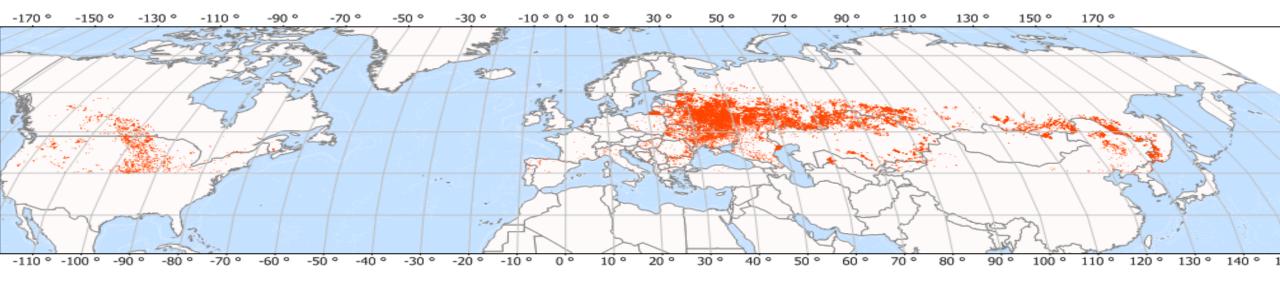

& Barren

Open burning currently spreads from Croplands to other humandominated landscapes.

What about the future?

settlements

Irrigated


Remote

Irrigated Rainfed

Populated

High Reduction Potential in EECCA Countries

Agricultural Fires* - April 2006

*all fires north of 40N Latitude

Review Considerations

(With sincere thanks for welcome comments!)

- > Transition to norm of fire use being the exception, not the rule
- Nearly always negative cost to farmers (some exceptions) even without monetizing extensive health and environment benefits
- > Challenge of interaction between air quality experts and agronomists/farmers
- Important to make connection to increasing wildfire spread from ARB and human activity (myth of "natural" fires) in warming climate
- Source of fire defines mitigation potential: prevention before firefighting
- > Do not confuse ARB with fire prevention burns or wildland ecosystem burns
- More on forest management and scenarios for managed burns
- **Good no-fire practices** *nearly* always exist to use of fire

ARB Emissions Reductions in Future

- Reduction of ARB may be the single largest AND most cost-effective mitigation option for PM2,5 and BC reductions for health, food security and climate
- Different alternatives for different crops: but these methods almost always benefit farmers economically in long term (and sometimes in short-term) – speed up transition
- No-fire methods will need to become the norm, with fire use the exception, in order to
 prevent wildfire spread and also to aid adaptation and a more resilient agricultural
 sector
- Guidance Document an important UNECE signal and roadmap (also outside UNECE)