Evaluation of Emissions from Light Duty Trucks with and without the Use of Gasoline Particulate Filters

Fadi Araji

Emissions Research and Measurement Section (ERMS) Environment and Climate Change Canada (ECCC) October 23rd, 2019

Canadä

1

Environment and Climate Change Canada Changement climatique Canada

Canadian Black Carbon Emissions from the Transportation Sector

Air Transportation Marine Transportation On-Road Transport Diesel	681 4 999 7 646	664 5 727	671 2 635	685 2 698	704
On-Road Transport		5 727	2 635	2 609	
·	7 646			2 090	2 761
Diesel		6 958	6 271	6 160	6 171
	6 784	6 166	5 494	5 349	5 375
Gasoline	862	792	776	811	796
Liquid Petroleum Gas	0.49	0.20	0.15	0.18	0.22
Natural Gas	0.21	0.20	0.20	0.30	0.61
Off-Road Transport	12 604	11 408	10 911	8 389	8 712
Diesel	12 105	10 897	10 405	7 941	8 259
Gasoline, Liquid Petroleum Gas, Natural Gas	499	511	507	448	453
Rail Transportation	1 900	1 762	1 515	1 395	1 404
Transportation and Mobile Equipment (total)	27 830	26 520	22 003	19 328	19 752

44 313 43 222 38 487

35 548

36 309

2

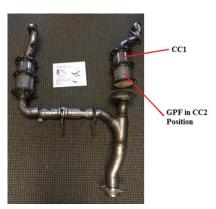
Grand total

Introduction

- Due to more stringent fuel consumption and emission standards there has been a significant market influx of Gasoline Direct Injection (GDI) vehicles
- GDI vehicles typically have lower fuel consumption but higher Particulate Matter (PM) emissions than Port Fuel Injection (PFI) vehicles
- In order to meet the current Tier 3 and LEV III PM emission standards of 3 mg/mile for Light Duty Vehicles (LDV) and 1 mg/mile by 2025 there is a need for PM control strategies
- Gasoline Particulate Filters (GPF) have a potential of being the primary emission control for PM

3

3


Project Scope

Investigate the benefits of replacing part of the OEM TWC on the emissions of light duty trucks using different GPF configurations, non-catalyzed and catalyzed.

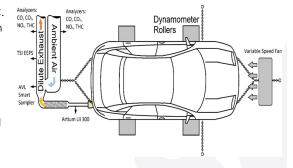
Test Vehicles:

Test Vehicle	PFI_1	GDI_1	GDI_2
Engine	3.6 L Naturally Aspirated	2.7 L Turbocharged	2.7 L Turbocharged
Emission Standard	LDT3 Tier 2 Bin4	LDT3 Tier 2 Bin4	LDT3 Tier 2 Bin4
Test Configuration	Non-catalyzed GPF	Non-catalyzed GPF	Catalyzed GPF
Daily Test Schedule	FTP-75 followed by US06	FTP-75 followed by US06	FTP-75 followed by US06

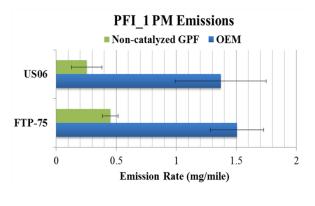
Project Scope

GPF Specifications:

GPF System	Non-catalyzed	Catalyzed	
Sample Size	Ø5.2 in×5 in	Ø5.66 in×4.92 in	
Porosity	~ 55%	~ 65%	
Material	Cordierite	Cordierite	
Cell Design	200 cpsi / 8 mil	300 cpsi / 8 mil	


*The Platinum Group Metal (PGM) coating was consistent with the OEM CC2 function of GDI_2.

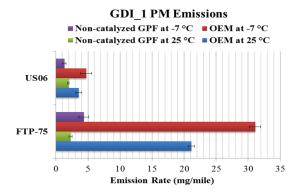
5


Project Scope

- The vehicles were tested on a four wheel drive chassis dynamometer at 25 °C & -7 °C.
- PFI_1 and GDI_1 were tested in stock OEM configuration and with a non-catalyzed GPF installed.
- GDI_2 was tested in stock configuration in addition to catalyzed GPF configuration.
- GDI_2 was also tested on-road using Portable Emissions Measurement System (PEMS)
- Tier 3 E10 certification fuel was used.

6

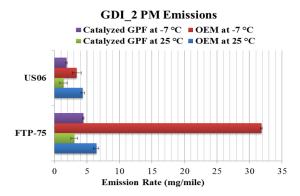
PFI_1 Particulate Matter Results


 70.1% reduction in PM for the FTP-75 and 82% for the US06

7

7

GDI_1 Particulate Matter Results


FTP-75:

- 89% decrease at 25 °C
- 86% decrease at -7 °C

US06:

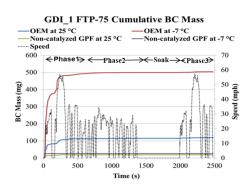
- 46% decrease at 25 °C
- 72% decrease at -7 °C

GDI_2 Particulate Matter Results

FTP-75:

- 53% decrease at 25 °C
- 86% decrease at -7 °C

US06:


- 69% decrease at 25 °C
- 46% decrease at -7 °C

9

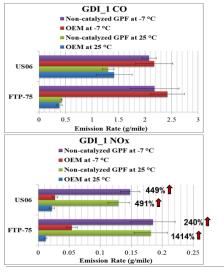
9

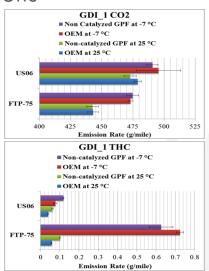
Environment and Climate Change Canada Changement climatique Canada

GDI_1 Cumulative Black Carbon Mass


Filtration Efficiency Based on Black Carbon Mass

Vehicle	Test	Temperature (°C)	BC Filtration Efficiency (%)	*PFI_1 and GDI_1 were tested with a non-catalyzed GPF and
DEI 1*	FTP75	25	79	GDI_2 was tested with a
PFI_1*	US06	25	96	catalyzed GPF
	FTP75	25	84	
ODI 4*	FTP75	-7	95	
GDI_1*	US06	25	59	
	US06	-7	77	Filtration officional
	FTP75	25	64	Filtration efficiency overall lower with
CDI 2*	FTP75	-7	90	catalyzed GPF on GDI 2
GDI_2*	US06	25	27	051 <u>-</u> 2
	US06	-7	48	
11				


11


Environment and Climate Change Canada Environment et Changement climatique Canada

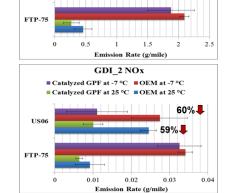
GDI_2 Particle Size Distribution

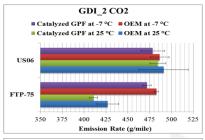
GDI_1 Gaseous Results

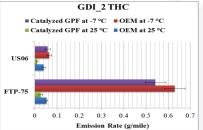
13

13

Environment and Climate Change Canada Environnement et Changement climatique Canada

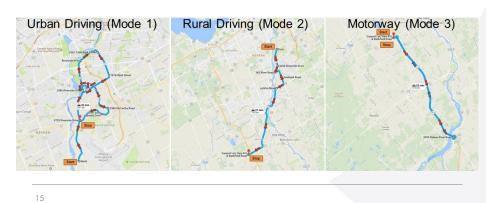

■ Catalyzed GPF at -7 °C

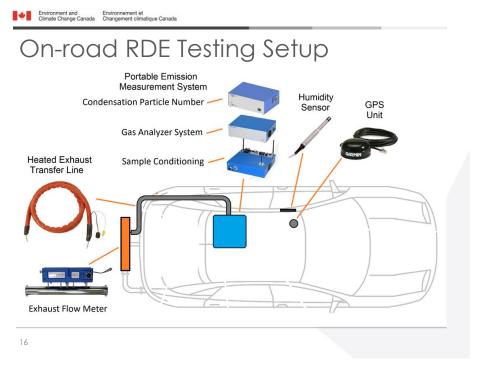

■ Catalyzed GPF at 25 °C


GDI 2 CO

GDI_2 Gaseous Results

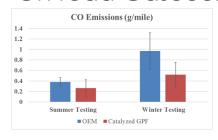
■OEM at -7 °C

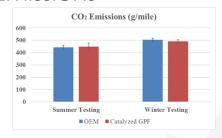


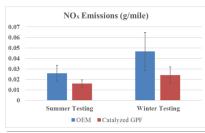


On-road RDE Testing Route

The on-road tests consisted of a driving route that combined three different driving segments and was compliant with Act III of the European Union RDE regulations outlined in EURO VI. Three modes represented different driving patterns:




15



On-road Gaseous Emissions

No significant difference in gaseous emissions between OEM and catalyzed GPF configurations

17

17

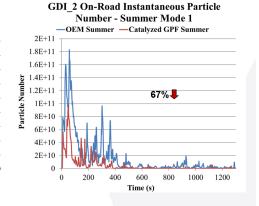
Environment and Climate Change Canada Changement climatique Canada

On-road Particle Number Emissions

1200

1000

OEM Winter —Catalyzed GPF Winter 2.25E+12 1.75E+12 1.25E+12 1.25E+12 7.5E+11 5E+11


600

Time (s)

800

GDI_2 On-Road Instantaneous Particle

Number - Winter Mode 1

18

2.5E+11

0

200

400

Conclusions

GPF System	Non-catalyzed	Catalyzed
Observations	Higher overall filtration efficiency	No need for additional gaseous conversion strategies More holistic solution due to its dual function
Challenges	Reduced gaseous conversion Need additional gaseous solution potentially added catalyst upstream of GPF	Short term filtration challenges which can be investigated by additional testing following mileage accumulation with GPF installed Other factors to consider like price of PGM coating and more OBD controls

19

19

Questions?

Contact information:

Fadi Araji <u>Fadi.Araji@Canada.ca</u> 613-998-7913