

HTAP2: Black Carbon and Ozone Results and Next Steps

Co-Chairs

Terry Keating (U.S.)

Vice Chairs

Tim Butler (Germany)

Heather Morrison (Canada)

Jacek Kaminski (Poland)

22 October 2019

1

TF HTAP Leadership Team

Co-Chairs

Terry Keating, U.S. Environmental Protection Agency Heather Morrison, Environment and Climate Change Canada

Vice Chairs

Tim Butler, Institute for Advanced Sustainability Studies, Germany

Jacek Kaminski, Institute of Environmental Protection, Poland

Task Force Goal:

- Foster international scientific cooperation to improve understanding of intercontinental transport of air pollution across the Northern Hemisphere
 - How do changes in emissions in one part of the world affect air quality in other parts of the world?
 - How do extra-regional emissions affect human and ecosystem health within a given region?

3

HTAP2: Suite of Cooperative Experiments to Assess Intercontinental Transport of Air Pollution

- 2010 Global Emissions Inventory
- 2010 meteorology
- ~15 global models
- Examined response of 20% reduction in anthropogenic emissions from one source region on air quality in the other source regions

HTAP2

- Of the ~15 models that participated in HTAP2, 10 included a treatment of aerosols
- Stjern et al., used these experiments to assess the impact of a 20% reduction in all anthropogenic emissions from one source region on levels of black carbon (BC), organic aerosols (OA) and sulphate (SO₄) everywhere else (including in the region where the emissions reduction was applied)
- From these BC, OA and SO₄ model outputs, they estimated the effect of reducing emissions on radiative forcing (RF) from the direct aerosol effect

Global and regional radiative forcing from 20 % reductions in BC, OC and SO₄ – an HTAP2 multi-model study

Camilla Weum Stjern¹, Bjørn Hallvard Samset¹, Gunnar Myhre¹, Huisheng Bian², Mian Chin³, Yanko Davila⁴, Frank Dentener⁵, Louisa Emmons⁶, Johannes Flemming⁸, Amund Søvde Haslerud¹, Daven Henze⁴, Jan Eiof Jonson⁷, Tom Kucsera⁹, Marianne Tronstad Lund¹, Michael Schulz⁷, Kengo Sudo¹⁰, Toshihiko Takemura¹¹, and Simone Tilmes⁶ Atmos. Chen. Phys., 16, 13579–13599, 2016

www.atmos-chem-phys.net/16/13579/2016/ doi:10.5194/acp-16-13579-2016 © Author(s) 2016. CC Attribution 3.0 License.

5

Source-Receptor Regions Analyzed

Results

- In most cases, the local influence dominates
- But, emission reductions in south (SAS) and east Asia (EAS) have substantial impacts on the radiative budget of all investigated receptor regions, especially for black carbon (BC)
- For North America, BC emission controls on east Asia (EAS) sources are • more important than domestic mitigation

7

HTAP2 also looked at intercontinental transport of ozone

Atmospheric Chemistry and Physics

Special issue

Global and regional assessment of intercontinental transport of air pollution: results from HTAP, AQMEII and MICS

Editor(s): F. Dentener, S. Galmarini, C. Hogrefe, G. Carmichael K. Law, B. R. D. Denby, and T. Butler

TOAST 1.0: Tropospheric Ozone Attribution of Sources with Tagging for CESM 1.2.2

Tim Butler¹, Aurelia Lupascu¹, Jane Coates¹, and Shuai Zhu^{1,a} ¹Institute for Advanced Sustainability Studies, Potsdam, Germany ^anow at: China Unicom System Integration Limited Corporation, Beijing, China Correspondence: Tim Butler (tim.butler@iass-potsdam.de)

Geosci. Model Dev., 11, 2825–2840, 2018 https://doi.org/10.5194/gmd-11-2825-2018 C Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

Source attribution of European surface O₃ using a tagged O₃ mechanism

Aurelia Lupaşcu1 and Tim Butler1.2 Institute for Advanced Sustainability Studies (IASS), Potsdam, 14467, Germany ²Freie Universität Berlin, Institut für Meteorologie, Berlin, Germany Correspondence: A.Lupascu (Aurelia.Lupascu@iass-potsdam.de)

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-225 Manuscript under review for journal Atmos. Chem. Phys Discussion started: 29 April 2019

Key Messages

- Intercontinental transport of ozone dominates over intercontinental transport of particulate matter (PM)
- Background ozone is very sensitive to methane concentration

9

Next Steps: HTAP3

- 1) Updated Harmonized Global Emission Inventory
 - Global Emissions Mosaic Update (HTAPv3)
 GEIA Meeting, Chile, November 2019
- Improve our understanding of the relationship between global methane emissions, intercontinental transport of ozone and human and ecosystem health
 - Workshop, Edinburgh, April 2020, with TOAR, ICP Veg, AQMEII, MICS, ...
- 3) Continued Development of the openFASST Tool
 - For Global Scenario Analysis and Uncertainty Assessment
- 4) Foster discussion/scientific work on the following topics:
 - Extra-Regional Attribution of O3, PM Trends for Gothenburg Review
 - Impacts of Shipping
 - · Taking Stock of Progress in Other Forums, Identifying Policy Relevant Needs

Conclusions

- Black carbon emissions are transported between source regions and continents; emission reductions from the major source regions in Asia would reduce the black carbon burden in the northern hemisphere
- Intercontinental transport of ozone makes a marked contribution to regional ozone levels; background ozone levels are sensitive to methane
- HTAP3 will develop an updated global emission inventory that will assess how intercontinental transport has changed since 2010