HTAP2: Black Carbon and Ozone Results and Next Steps

Co-Chairs
Heather Morrison (Canada) Terry Keating (U.S.)

Vice Chairs
Tim Butler (Germany) Jacek Kaminski (Poland)

22 October 2019

TF HTAP Leadership Team

Co-Chairs
Terry Keating, U.S. Environmental Protection Agency
Heather Morrison, Environment and Climate Change Canada

Vice Chairs
Tim Butler, Institute for Advanced Sustainability Studies, Germany
Jacek Kaminski, Institute of Environmental Protection, Poland
Task Force Goal:

- Foster international scientific cooperation to improve understanding of intercontinental transport of air pollution across the Northern Hemisphere
 - How do changes in emissions in one part of the world affect air quality in other parts of the world?
 - How do extra-regional emissions affect human and ecosystem health within a given region?

HTAP2: Suite of Cooperative Experiments to Assess Intercontinental Transport of Air Pollution

- 2010 Global Emissions Inventory
- 2010 meteorology
- ~15 global models
- Examined response of 20% reduction in anthropogenic emissions from one source region on air quality in the other source regions
HTAP2

- Of the ~15 models that participated in HTAP2, 10 included a treatment of aerosols
- Stjern et al., used these experiments to assess the impact of a 20% reduction in all anthropogenic emissions from one source region on levels of black carbon (BC), organic aerosols (OA) and sulphate (SO₄) everywhere else (including in the region where the emissions reduction was applied)
- From these BC, OA and SO₄ model outputs, they estimated the effect of reducing emissions on radiative forcing (RF) from the direct aerosol effect

Global and regional radiative forcing from 20% reductions in BC, OC and SO₄ – an HTAP2 multi-model study

Camilla Weum Stjern¹, Bjorn Hallvard Samsel¹, Gunnar Myhre¹, Huisheng Bian², Mian Chin³, Yanku Davila⁴, Frank Dentener⁵, Louis Emmons⁶, Johannes Flemming⁷, Anamol Sovde Haslerud⁸, Daven Henze⁹, Jan Elfo Jonson⁴, Tom Kinnsera⁴, Marianne Tronstad Lund¹, Michael Schultz², Rengo Sudo⁴, Toshihiko Takemura⁴, and Simone Tilmes⁴

Source-Receptor Regions Analyzed

C.W. Stjern et al., 2016
Results

- In most cases, the local influence dominates
- But, emission reductions in south (SAS) and east Asia (EAS) have substantial impacts on the radiative budget of all investigated receptor regions, especially for black carbon (BC)
- For North America, BC emission controls on east Asia (EAS) sources are more important than domestic mitigation

HTAP2 also looked at intercontinental transport of ozone
Key Messages

- Intercontinental transport of ozone dominates over intercontinental transport of particulate matter (PM)
- Background ozone is very sensitive to methane concentration

Seasonal cycle of surface ozone: Europe

Next Steps: HTAP3

1) Updated Harmonized Global Emission Inventory
 - Global Emissions Mosaic Update (HTAPv3)
 - GEIA Meeting, Chile, November 2019

2) Improve our understanding of the relationship between global methane emissions, intercontinental transport of ozone and human and ecosystem health
 - Workshop, Edinburgh, April 2020, with TOAR, ICP Veg, AQMEII, MICS, ...

3) Continued Development of the openFASST Tool
 - For Global Scenario Analysis and Uncertainty Assessment

4) Foster discussion/scientific work on the following topics:
 - Extra-Regional Attribution of O3, PM Trends for Gothenburg Review
 - Impacts of Shipping
 - Taking Stock of Progress in Other Forums, Identifying Policy Relevant Needs
Conclusions

• Black carbon emissions are transported between source regions and continents; emission reductions from the major source regions in Asia would reduce the black carbon burden in the northern hemisphere

• Intercontinental transport of ozone makes a marked contribution to regional ozone levels; background ozone levels are sensitive to methane

• HTAP3 will develop an updated global emission inventory that will assess how intercontinental transport has changed since 2010