Overview of Domestic Heating Appliances Sector

Marco Palazzetti
Chairman of Biomass Commission in CEFACD

Chairman of Bioenergy Europe Domestic Heating Working Group
Located in Brussels Bioenergy Europe is committed to develop a sustainable bioenergy market based on fair business conditions. Through the EPC network manages worldwide the ENPlus Certification.

Member of the board of AIEL Domestic Appliances Commission
Italian Association representing the whole value chain from the forest management to the energy conversion of wood. Owner of AriaPulita® Certification, BiomassPlus® Certification and license for Italy of ENPlus® certification.

CEO of Palazzetti Lelio SpA
Stoves and fireplaces manufacturing company, located in North Est of Italy, selling worldwide with the brand PALAZZETTI.
Introduction to CEFACD

Who is CEFACD?
- The CEFACD is the international trade organization for local space heating appliances for all fuels. We represent biomass, gas and electric products.
- Our members are manufacturing companies and national trade organizations.
- CEFACD has been re-founded end of 2017, members and governance scheme are completely new.
- We have one common goal and that is to assure a market for our products also in the future. Therefore we have to make sure that our products fit into the energy transition that Europe is going through with a long term view.

CEFACD Network

Current members
- DRU (NL)
- Glen Dimplex Europe (NL)
- MCZ (IT)
- NIBE-stoves (SE)
- Palazzetti (IT)
- RIKA (AT)
- STUV (BE)
- HKI (German trade organization)
- SHR (Dutch trade organization)
- SIA (UK trade organization)

CEFACD is member of
- AEBIOM (European Biomass Association)
- ORGALIME (EU electronic and metal articles industries association)
Residential heating with biomass in EU

74% of total bioenergy

Source: Eurostat, AEBIOM's calculations
Differences between EU Countries
Distributed µGeneration of Heat from Renewable Energy Sources (Wood or Pellet) is a modern model (compatible with lower energy need of buildings, heat production can be regulated, doesn’t need any grid, short range sourcing, regional economy, etc.)

Those appliances are mostly combined with other heating appliances: Optimized Energy Mix Concept

which is strongly linked with the cost of energy sources that is very heterogeneous in EU and rarely linked to Environmental concerns
The pillars of quality and performance

1. IT’S A HEATING APPLIANCE

2. IT’S PART OF THE ROOM’S FURNITURE

3. IT’S A TECHNOLOGICAL, ECOLOGICAL AND SUSTAINABLE CHOICE

- Power output
- Efficiency
- Single room vs whole house
- Cost per KWh
- Design
- Materials
- Cleanliness
- Usability
- Coziness
- Emissions
- Renewable energy
- Smart
- Independence
Quality pillars:

In order to grant performance and emission reduction we relay to those 5 principles:

1. **good appliance: technology**, real life/emission certification (best practices: AT BeReal®, FR Flamme Verte®, IT Aria Pulita®, etc...)
2. **good fuel**: supply chain sustainability, certification (best practices: EU ENPlus®, IT BiomassPlus®, etc...)
3. **good installation**: regulations (best practices: DE, AT, IT: CURIT Lombardia region, etc...)
4. **good maintenance**: regulations (best practices: DE, AT, IT: CURIT Lombardia region, etc...)
5. **user best practices**: awareness, knowledge (best practices: UNECE Burn Right Campaigns, IT www.energiadallelegno.it, etc...)

Emissions and the role of technology
Differences between old and new appliances are relevant

But Ecolabelling is not giving evidence of it

Emissions of small scale residential heating appliances is an issue → different reactions

Certification schemes
- Aria Pulita (AT)
- Flamme verte (FR)
- DEFRA (UK)
- Nordic Swan Ecolabel (Nordic countries)
- Optimaz (BE)
- P-Mark (SE)
- SEI (IE)
- Blue angel (DE)
- Residential space heating appliances fired by wood pellets with low-pollution combustion (DE)
- BAFA (DE)
- BImSchV (DE)
- EPA wood stove certification (USA)
- MCS certified products (UK)
- UZ37 (AT environmental label)
- TUV Rheinland 15A B-VG (AT)
- PCT (RU)
- EKO SKLAD (SL)
- AEFECC (ES)
- Etc.

Standards
- EN 13229 – Fireplaces
- EN 15250 – Mass stove
- EN 13240 – Wood stoves
- EN 14785 – Pellet stoves
- ISO 303-5 – Solid fuel boiler
- Royal Decree 12 October 2010 (BE)

→ need for a standard
Figures on the topic are difficult to evaluate

Different Emission Factors for the same technology

No harmonization in EU for the Emission Inventory calculations

Emissions characterization

The main components are:

- Dust (PM)
- Organic Gas Compounds (OGC)
- Carbon Monoxide (CO)
- Nitrogen Oxide (NOx)
Technological areas of intervention

• PRIMARY MEASURES
 • Burning Pot
 • Combustion Chamber
 • Heat Exchanger
 • Flues Collector
 • Electronic Combustion Control (+ feeding system)

• SECONDARY MEASURES
 • Active Systems
 • Passive Systems

• BIG DATA ANALYSIS
 • IOT enabled appliances (Pellet but also Wood)

Best Practices: Pellet Appliances
Burning pot

The material of burning pot and a good combustion bed allows temperature to rise → complete combustion → less Carbon based emissions

The shape of the burning pot and the inclination of secondary air inlet need to be engineered to reduce dust dragging

Electronic combustion control – sealed appliances

“CLOSED LOOP AIR INPUT REGULATION”
Definition: “A micro-manometer fitted on the control board connected with the speed sensor of exhaust fan create the perfect control and regulation in order to maintain the exact ratio between fuel and fresh air.”

Those systems reduce the pollutant emissions in each combustion phase. Usually during the transitional phases uncontrolled combustion produce a huge quantity of Carbon Monoxide (ignition and power modulation)
Combustion chamber

The volume of the combustion chamber helps to reduce the speed of the exhaust → minimize dust carry out.

Refractory materials increase the temperatures of combustion chamber → higher and complete oxidation of combustion emissions.

Heat exchanger

The exhaust path into the heat exchanger, turbulence and speed effect dust dragging.

The geometry of the heat exchanger has to allow smooth and progressive cooling of the exhaust to prevent pollutant agglomerations.
The closest point to the exhaust fan inlet is the point with minimum pressure → dragging risk

Flues collector

The flues collector has to reduce the turbulence of the exhaust in order to prevent drag out of the dust in the flue ways.
Achievable Results

<table>
<thead>
<tr>
<th>9 kW Pellet</th>
<th>Efficiency [%]</th>
<th>Flue Temperature [°C]</th>
<th>CO [mg/Nm³]</th>
<th>NOx [mg/Nm³]</th>
<th>CxHy [mg/Nm³]</th>
<th>Dust [mg/Nm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcoDesign</td>
<td>89</td>
<td>--</td>
<td>250</td>
<td>200</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Wood Ref.</td>
<td>81</td>
<td>262</td>
<td>813</td>
<td>107</td>
<td>59</td>
<td>18</td>
</tr>
<tr>
<td>Pellet OLD</td>
<td>90</td>
<td>204</td>
<td>167</td>
<td>121</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Pellet New*</td>
<td>92</td>
<td>162</td>
<td>49</td>
<td>131</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

*those results were achieved adopting only primary measures and measured using EN 14785 standard

Secondary measures

ACTIVE SYSTEMS

Definition: “An active system changes the shape/composition of the dust and pollutants. It thus appears that an active system is much more functional than a passive system, if properly calibrated, because it can effect not only the amount and shape of the dust but also other elements that can be oxidized again (additional combustion) in order to reduce the emission of harmful elements.

Depending on the type of molecules it can be a complete oxidation reaction of abnormal combustion or cracking process to reduce complex molecules.”
Secondary measures

ACTIVE SYSTEMS

Key Factors (3T):

Time
Turbulence
Temperature

3T + Stove characteristics lead to the choice of the correct CPSI and filter positioning

Secondary measures

PASSIVE SYSTEMS

A passive system can only collect the dust emitted from the burner. These systems have an higher efficiency on particle collection compared with the catalytic systems but they have no influence in others molecules and you need electricity, air to purge the electrode and a higher maintenance to remove the PM deposited on the flue pipe.
Big Data Analysis to rise user awareness

Big Data Analysis:
Case#1 - Air heating stove
Conclusions

• **Bioenergy** is a great opportunity for EU in terms of cost (it’s part of the forest circular economy), EU energy dependency mitigation, jobs and global CO$_2$ emissions **reduction**

• **Technology** is in constant evolution there’s a **big potential**:
 - big difference between old and new appliances
 - secondary measures are at very **early stage of application**
 - **big data** analysis can notify users for best practices

• We’re working for an harmonized EU wide (at least) **quality label to classify** the appliances throughout all kind of emissions

• Need to issue quality oriented policies to **renew the stock of appliances**

• **Emissions inventories** need to be **updated** to measure the effectiveness of the policies and be coherent with the evolution of the technology

• Industry long term commitment to keep on **investing** in R&D and full support to **quality oriented initiatives**
 (IT: framework agreement with the Ministry of the Environment for emissions reduction up to 70% by 2030)

• Quality pillars: good appliance, good **fuel**, good **installation**, user **best practices**, good **maintenance**.
Thank you