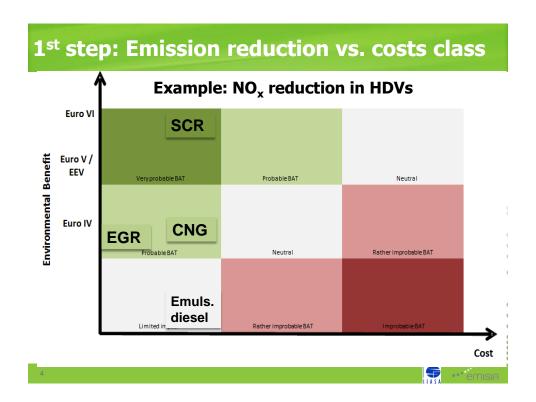
Best available technologies for emission control techniques on mobile sources

Leonidas Ntziachristos, Giannis Papadimitriou (EMISIA)

Jens Borken-Kleefeld (IIASA)

A European Commission (DG Environment) project
Dec. 2013 – Dec. 2014


Technical description of BAT candidates

- Pollutants addressed, type of application, short description
- Environmental benefit (% reduction)
- Extra costs (installation, operation, ...)
- Synergies & trade-offs
 (fuel consumption, non-regulated pollutants, ...)
- Limitations in applicability, implementation issues, maintenance requirements, ...
- Successful examples & references

Overview of technologies

Description		Example	
		NO _x reduction	
source are targeted		in heavy duty diesel road vehicles	
	Engine measures	Exhaust Gas Recirculation (EGR)	
	Aftertreatmt	Selective Catalytic Reduction (SCR)	
		Natural gas (CNG)	
Technologies from different	Fuels		
categories			
	Powertrain	Hybridization	
	Non-technical	Enhanced Inspection and Maintenance	
3 ···· emisia			

2nd step: Limitations, trade-offs, synergies

• Discuss bottlenecks, synergies, trade-offs

Example: NO_x reduction from heavy-duty vehicles

2nd step: Limitations, trade-offs, synergies

CNG	 Conversion to NG can lead to some NO_x reduction, but the technical complications, fuel availability, and high initial costs are limiting factors; NG for trucks is still at experimental scale. CH₄ emissions and PN may increase in some applications. Hence, NG is considered as BAT especially for OEM applications in captive fleets (e.g. buses). 	
DME	 •It is a NG liquid derivative, offering similar emission reduction profile. Easier handling for refueling and storage. Experience in DME-fuelled vehicles is limited. More appropriate for dedicated fleets (e.g. buses) or for use in fuel cells. •It can be considered for diesel replacement in future, but the issues of production and distribution must be addressed first. 	
6		

Next steps

- Written comments until 24 October 2014
- Finalization until December 2014 of
 - Technical Review (~170 pages)
 - draft Guidance Document (~25 pages)
 - further suggestions
- At discretion of EGTEI / TFTEI.....
- Any follow-up work & stakeholder meetings...?

4