Energy-from-Waste

State of the art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas

9) Pollutants Abatement Cost/ Benefit Analysis

3

ENIM C. Cord'Homme State of the art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014

C. Cord'Homme State of the art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014

7

ENIM

An integrated FLUE GAS TREATMENT company with 3 activities

WASTE

INDUSTRY

ENIM

Lap			FGT WtE Harlingen (NL)
Flue ga	s-treatment (LA		
Location	I ∎³/h	Commissioni ng vear	
Meath (IE)	1 x 128.000	2010	
	1x88.000	2011	FGT WtE Roskilde (DK)
Winterthur (CH)	1 x 105.000	2012	
Düsseldorf (DE)	1x220.000	2012	
Vaasa (FI)	1 x 172.000	2013	deSOx Power Plant Paroseni (Ro)
Dombasle (FR)	2 x 126.000	2014	
Kara (DK)	1 x 157.000	2014	
Paroseni (RO)	1x660.000	2014	
Plymouth (UK)	1 x 207.000	2014	FGT WtE
Vantaa (FI)	1 x 118.000	2014	
Odense (DK)	1 x 159.000	2014	Nordforbraending (DK)
Trebovice (CZ)	1x375.000	2015	
Longyearbyen (NO)	1x45.000	2015	
Horsholm (DK)	1x63.000	2015	
Copenhagen (DK)	2 x 213.000	2016	

C. Cord'Homme

State of the art or best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014

10

Daily Emission Limit Values (ELVs) to air according to IED 2010/75/EU

SUBSTANCES/ ACTIVITIES	, ELVs in mg/Nm ³ (dioxins & furans in ng/Nm3)		Thermal Input (MW _{th})	Dust	тос	со	нсі	HF	SO2	NOx	Dioxins and furans	Cd + TI	Hg	Heavy Metals (Sb+As+Pb+C +Co+Cu+Mn+N +V)
Waste incineration & Co-incineration	at 11% O ₂ dry	New & Existing > 3 t/h	~ 7	10	10	50	10	1	50	200 (expressed in 1102)	0.1	0.05	0.05	0.5
(coal, lignite and		New & Existing	< 50	-	-			-			ne	an	-	-
		Existing (started exception	50-100	30 (20)			tes	st	400	3 (20 150 (300) pulverized lignite]	P		-	-
		until 7/01/2014)	7 90-300	2 44					250 (167)	200 (133)	tin	n	- 1	-
		Etw	50-100 100-300	20 (13)			-9	I	200 (133) Jeg	100 (267) PU/Arited april2		-	-	-
		•	100-300	all	ne				200 (133)	200 (133)	-	-	-	-
		Env	ru	-10 (7)	_		•	-	150 (100) [200 (133) [Fluidized bed]	150 (100) [200 (133) pulverized lignite]	-	-		-
Combustion plants (biomass)	at 6% O ₂ dry	Existing	50-100	30 (20)	-	-	-	1.1	200 (133)	300 (200)	-	-		-
		until 7/01/2014)	100-300	20 (13)		-	-	1.1	200 (133)	250 (167)	-	-	-	-
		unui 7/01/2014)	> 300	20 (13)	-	-	-		200 (133)	200 (133)	-	-	-	-
		New	50-100 100-300	20 (13) 20 (13)	-	-	-	-	200 (133) 200 (133)	250 (167) 200 (133)	-	-		-
		INCAN	> 300	20 (13)	-				150 (100)	150 (100)	-	•	-	-

Industrial Emission Directive of 24/11/2010 for different industrial activities using solid fuels

ENIM C. Cord'Homme State of the art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014

17

C. Cord'Homme State of the art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in fue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014 30

State of the art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014 ENIM C. Cord'Homme

State of the art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014 ENIM C. Cord'Homme 32

ENIM

ENIM