Energy-from-Waste

State of the art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas

Agenda

1) CNIM/ Lab Presentation
2) Energy-from-Waste (EfW) Plants in Europe
3) Waste Composition and Pollutants
4) Energy-from-Waste Scheme
5) Emission Limit Values (ELVs) to air according to IED 2010/75/EU
6) Pollutants Abatement Performances
7) Pollutants Emissions from EfW Plants
8) Air Pollution Control Technologies
9) Pollutants Abatement Cost/ Benefit Analysis

23rd EGTEI Annual Meeting Convention on Long-Range Transboundary Air Pollution 10th of October 2014 Brussels, Belgium

Christophe CORD’HOMME
CNIM Group
Business & Products Development Director
And Flavio MATOS
CNIM 2013 key figures

- 2013 revenue: 782 M€ including 67% from exports
- Revenue by sectors
 - 18% Environment
 - 15% Innovation & Systems
 - 67% Energy

- Order book: €1,109 million
- 2,800 employees (out of which 1,300 engineers)
- Listed on the stock exchange since 1986

Figures at December 31, 2013

CNIM Environment activities

Multi-channel approach to master the processing cycles of municipal and industrial waste management

- Turnkey waste valorisation plants with a unique offer of Design and Build as EPC for Waste-to-Energy, Biomass-to-Energy, Waste Sorting and Composting...
- Flue gas cleaning, Bottom ash & residues treatment
- Plant Operation & Maintenance and revamping
CNIM Environment references

CNIM is one of the top European specialists of Waste-to-Energy recovery

- 281 CNIM MSW Waste-to-Energy lines built allowing the treatment of about 25 million tons of waste per year
- 19 MSW Waste-to-Energy lines operated by CNIM
- 412 LAB Flue Gas Treatment installations built cleaning the combustion gases of around 34 million tons of waste per year

CNIM latest and ongoing WtE & BtE projects

<table>
<thead>
<tr>
<th>Waste-to-Energy Plants</th>
<th>Location</th>
<th>t/h</th>
<th>Commissioning year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marseille (FR)</td>
<td>2 x 20</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Brno (CZ)</td>
<td>2 x 14</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Baku (AZ)</td>
<td>2 x 33</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>St Omer (FR)</td>
<td>1 x 12.5</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Hammeville (BE)</td>
<td>1 x 13</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Liencres (FR)</td>
<td>1 x 19</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>Faltida (IT)</td>
<td>1 x 31</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>Turin (IT)</td>
<td>3 x 22.5</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>Lorient (FR)</td>
<td>3 x 10</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Thetfordshire (UK)</td>
<td>2 x 20</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Camden (UK)</td>
<td>2 x 23</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>Barnsley (UK)</td>
<td>2 x 16</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>Hampshire (UK)</td>
<td>1 x 12</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>York (UK)</td>
<td>1 x 23.5</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>Wilton - Middlesbrough (UK)</td>
<td>2 x 29.2</td>
<td>2016</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biomass Plants in t/h</th>
<th>Location</th>
<th>t/h</th>
<th>Commissioning year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kogeban (FR)</td>
<td>1 x 29.6</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Ridham Dock (UK)</td>
<td>1 x 22</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>Estrées-Mons (FR)</td>
<td>1 x 23</td>
<td>2016</td>
<td></td>
</tr>
</tbody>
</table>
An integrated FLUE GAS TREATMENT company with 3 activities

POWER

WASTE

INDUSTRY
State of the art best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014.

State of the art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014.

Data supplied by CEWEP members unless specified otherwise.

* From Eurostat
Waste Composition and Pollutants

Typical MSW Composition in Europe

Pollutants from MSW Combustion

- CO2
- H2O
- N2
- CO
- NOx (NO, NO₂)
- HCl
- HF
- SOx (SO3, SO2)
- Gas (Hg, Cd)
- Particles (Pb, Cu, Cr, Co...)
- Dioxins (PCDD/F)...

Fly Ash and Bottom Ash

Energy-from-Waste Scheme

State-of-the-art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTeti Annual Meeting - Brussels, 10th of October, 2014

Collect

Furnace

Boiler O

Flue gas treatment

Chimney

Export 0.60 MWh

Turbine

Internal consumption 0.10 MWh

1 Ton of MSW NCV ~ 9,4 MJ/kg

Air 5200 Nm³

Ammonia solution (25%) 4 kg

Slaked lime 1.4 kg

Activated carbon 0.45 kg

20 kg Scrap Iron

220 kg Bottom Ash

16 kg Fly Ash

32 kg AFC residue

Steel industry

Road construction

Recycle / Controlled Landfill

State-of-the-art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTeti Annual Meeting - Brussels, 10th of October, 2014
Daily Emission Limit Values (ELVs) to air according to IED 2010/75/EU

Industrial Emission Directive of 24/11/2010 for different industrial activities using solid fuels

| SUBSTANCES/ACTIVITIES | ELVs in mg/Nm³ (dioxins & furans in ng/Nm³) | Thermal input (MWth) | Dust | TOC | CO | HCl | HF | SO₂ | NOₓ | Dioxins and furans | Cd + Tl | Hg | Heavy Metals (expressed in %)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Incineration & Co-incineration</td>
<td>at 11% O₂ dry</td>
<td>New & Existing < 32 mg/Nm³</td>
<td></td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>1</td>
<td>50</td>
<td>300</td>
<td>100</td>
<td>0.5</td>
</tr>
<tr>
<td>Combustion Plants (coal, lignite and other solid residues)</td>
<td>at 6% O₂ dry (converted to 11% O₂ dry)</td>
<td>New & Existing < 50</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Effluent Treatment Plants (EFW, and industrial waste)</td>
<td>at 6% O₂ dry (and 11% O₂ dry)</td>
<td>New</td>
<td>50-100</td>
<td>20</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustion Plants (biomass)</td>
<td>at 6% O₂ dry</td>
<td>New</td>
<td>100-300</td>
<td>20</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing</td>
<td>> 300</td>
<td>20</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Incineration: 20 components and lower ELVs (most stringent EU environmental Legislation)
- Combustion Plants > 50 MWth: Higher ELVs and for 3 pollutants only
- Combustion Plants < 50 MWth: no emissions limits

EfW: Strictest European Environmental Legislation

Abatement Performance of Pollutants in EfW

Measured values << ELVs (Emission Limit Values)

Typical Measured Values at Stack over ELVs EU Directive 2000/76/EC

<table>
<thead>
<tr>
<th>Substance</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ</td>
<td>200 mg/Nm³</td>
</tr>
<tr>
<td>SO₂</td>
<td>180 mg/Nm³</td>
</tr>
<tr>
<td>Dioxins</td>
<td>25 mg/Nm³</td>
</tr>
<tr>
<td>Metals</td>
<td>0.5 mg/Nm³</td>
</tr>
<tr>
<td>Dust</td>
<td>10 mg/Nm³</td>
</tr>
</tbody>
</table>

Typical Measured Values at Stack over FGT Inlet

<table>
<thead>
<tr>
<th>Substance</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ</td>
<td>200 mg/Nm³</td>
</tr>
<tr>
<td>SO₂</td>
<td>180 mg/Nm³</td>
</tr>
<tr>
<td>Dioxins</td>
<td>25 mg/Nm³</td>
</tr>
<tr>
<td>Metals</td>
<td>0.5 mg/Nm³</td>
</tr>
<tr>
<td>Dust</td>
<td>10 mg/Nm³</td>
</tr>
</tbody>
</table>

State of the art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014
Pollutants Emissions from EfW Plants

Share of EfW in Total Emissions

Data from 50 WtE plants in selected countries
(Czech Republic, France, Germany, Italy, Netherlands and Sweden)

Source: Helmut Rechberger & Gerald Schöller, TU Vienna Institute for Water Quality, Resources and Waste Management

Pollutants Emissions from EfW Plants

In Germany only 0.7% of total dioxins/furans released in the atmosphere in 2000 were from EfW plants

State of the art of best available techniques to abate dust, acid gases, heavy metals, NOX and POPs present in flue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014

C. Cord’Homme
State of the art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014

Abatement Technologies Dedusting

- Bag house filter
- Electrostatic precipitator

Abatement Technologies Acid Gases

- Dry
 - SecoLAB®
- Semidry
 - SemisecoLAB
- Wet
 - GraniLAB, CycloLAB, DedioxLAB
 - VapoLAB®
Abatement Technologies deNOx

DeNOx Technologies

SNCR (non catalytic) 950 – 1050 °C
TerminoLAB® 200 – 280 °C
CataLAB® (catalytic) 180 – 250 °C

Abatement Technologies : dediox

Adsorption Activated carbon
or
Catalytic Oxidation
Flue Gas Cleaning, 1st STAGE:
SNCR de-NOx (Selective Non Catalytic Reduction)
In the combustion chamber at high temperature (800 – 850°C)

State-of-the-art high performance Dry System

2nd step injection of dry additives
- Powerful removal of acidic pollutants by hydrated lime or bicarbonate
- Removal of mercury and dioxins by activated coke or activated coal

Abatement Technologies
State-of-the-art high performance **Dry System**

3rd step
Reactivation and recirculation of fabric filter dust

- Final removal of pollutants
- Buffering of pollutants peaks
- Minimization of additive consumption

External Ecominizer

LAB Loop entrained suspension reactor

State of the art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014

State of the art of best available techniques to abate dust, acid gases, heavy metals, NOx and POPs present in flue gas, 23rd EGTEI Annual Meeting - Brussels, 10th of October, 2014
Abatement Technologies: Aerosol in Wet System

Abatement Technologies SCR de-NOx (Selective Catalytic Reduction)
Cost / Benefit analysis

Typical ½ hourly average values over one year ≈ 17000 values

Dry FGC process

HCl ½-hr averages over 1 year

Graph by L. Kosior, SITA

Cost / Benefit analysis (assuming plant capacity is 10 t/hr)

Lowering the ELV of HCl from 60 to 10 mg/Nm³ would:
- Reduce the HCl emitted flow by 11 kg/year
- Increase the lime consumption* by 240,000 kg/y
- Increase the FGC residues by 240,000 kg/y

* Assuming 15 kg Ca(OH)₂ per t, and 20% additional consumption

Dry FGC process

HCl ½-hr average over 1 year – Data arranged by value

HCl yearly mass flow: 1137 kg/y
(yearly average: 2.7 mg/Nm³)

HCl outliers mass flow
(between 10 and 50 mg/Nm³):
11 kg/y = 0.9% of the total

11 kg
(Benefit)

2 x 240 t
(COST)