

Description		Example				
Main pollutants per mobile source are targeted		NO _x reduction in heavy duty diesel road vehicles				
	Engine measures	Exhaust Gas Recirculation (EGR)				
	Aftertreatment	Selective Catalytic Reduction (SCR)				
		Natural gas (CNG)				
Techniques from different	Fuels					
categories						
	Powertrain	Hybridization				
	Non-technical	Enhanced Inspection and Maintenance (I/M)				

Technique		"Expected Cost per vehicle Environmental side effects and synergies effect" (Euro) (positive / negative)				Limitations in applicability	Implementation and other issue		
I	A. Exhaust Gas Recirculation (EGR)	25-45%	1,600 (ndicative manufacturer cost)	n.a.	Slightly reduces engine power PM recirculation if not combined with a DPP	Ultra Low Sulfur Diesel (ULSD) required <50ppm Electronic control strategy required to ensure operation	Major engine integration when retrofitted Exhaust cooling may result in engin wear due to excess water vapour		
	8. Selective Catalytic Reduction (SCR)	70-95%	7,500 installation (one-off) +500 urea +200 maintenance -800 possible fuel savings (OEM) per year (*)	Reduction of VOC (S0-90%), CO (S0- 90%), PM (20-40%) 3-5% possible fuel consumption benefits (OEM applications) Reduction of the characteristic odor produced by a desel engine and smake	Risk for "ammonia slip"	Urea additive must be available Certain temperature criteria for NO, reduction to occur (data logging) Lower efficiency in low-load dty driving (low exhaust gas temperatures)	Requires infrastructure for urea additive Periodic refiling with urea required (on-board dosing unit) SCR units are large, heavy, comple and bulky systems		
	C. Conversion to natural gas (CNG)	20-50%	12k-15k (one-off for conversion) minus 500-1,000 fuel cost benefits per year	Reduction of PM and BC (85-95%), CO (70-95%), NMVOC (75-85%) Lower CO ₂ emissions due to lower carbon content	Low volumetric energy content Not so effective in PN as DPF Increase of CH, emissions	Availability of fuel Gas tank limits storage space and increases vehicle weight Oriving range may decrease (better for urban applications)	May require significant changes to fueling infrastructure and maintenan facilities Limited experience in long term tru performance		
	D. Emulsified diesel	10-20%	1,200-1,600 per year (***)	Reduction of PM (50-60%)	Decrease in power and fuel economy	Availability of fuel	Over time the water can settle out o the emulaified fuel and may cause performance problems		
	E. Hybridzation (off-vehicle or on- vehicle charging)	40-50%	50k-100k (one-off) minus 5k-10k energy and maintenance cost benefits per year	High fuel consumption benefits (especially buses) Similar decreases in practically all pollutants Low noise and PM resuspension, especially taking off from bus stops	n.a.	Recharging necessary for off-vehicle charging vehicles Driving range may decrease (better for urban applications)	Trucks not at mass production yet		
	F. Enhanced Inspection and Maintenance (I,M)	15-35%	300-500 (***)	Decrease of other pollutants through maintenance Improvement of vehicle safety	n.a.	Police enforcement may be necessary	Infrastructural changes (retooling: I/M stations, education of personne - Suitability of locations for remote sensing		

Example: Summary of BAT candidates for HDV NO

Ass	essment – 1/3
Start	ing from dark green options
	•SCR is a cost-effective technology to reduce NO_x from diesel HDVs. It is ideal for OEM applications, but retrofit systems are also available and effective.
SCR	•Urea additive has to be made widely available, since periodic refilling is required; risk for 'ammonia slip'.
	•SCR is a BAT with main issues for consideration the urea infrastructural needs and the low efficiency in low-load city driving that may be observed.
14	😴 - emisia

Asse	essment – 2/3
Going t	o light green
	•Can reduce NO _x and practically offer a decrease in most pollutants, with additional high fuel consumption benefits.
Hybridi- zation	•Can be considered as BAT (especially for buses), with main limitation the high initial capital cost (although fuel efficiency improvements may lead to cost benefits in the long run).
	Hybrid trucks not at mass production yet.
CNG	•Conversion to NG can lead to some NO _x reduction, but the technical complications, fuel availability, and high initial costs are limiting factors; NG for trucks is still at experimental scale. CH ₄ emissions may increase in some applications.
	•Hence, NG is considered as BAT especially for OEM applications in captive fleets (e.g. buses).
15	🕤 📲 emisia

Ass	essment – 3/3
DME	 It is a NG liquid derivative, offering similar emission reduction profile. Easier handling for refueling and storage. Experience in DME-fuelled vehicles is limited. More appropriate for dedicated fleets (e.g. buses) or for use in fuel cells. It can be considered for diesel replacement in future, but the issues of production and distribution must be addressed first.
	 issues of production and distribution must be addressed first. Reduces NO_x but less effectively than SCR. Slightly reduces engine power. Requires low sulfur fuel and major engine integration effort
EGR	when retrofitted.Limited potential due to technical difficulties integrating this on existing engines.
46	

Asse	essment – 2/3
Dark g	reen options
Natural Gas	•Conversion to NG can lead to high PM reduction, but technical complications, fuel availability, and high initial costs are limiting factors; gas tanks may prohibitively increase vehicle weight. CH ₄ emissions may increase in some applications.
	•Hence, NG is considered as BAT especially for OEM applications. The experience is limited as retrofit.
DME	•DME is an NG liquid derivative, offering similar emission reduction profile. Easier handling for refueling and storage. Experience in DME-fuelled vehicles is limited. More appropriate for dedicated fleets.
	•It can be considered as a diesel replacement in the future, but issues of production and distribution must be addressed first.
20	🝷 📲 emisie

Asse	ssment – 3/3
Light gr	een options
Hybridi- zation	 Can reduce PM and practically offer a decrease in most pollutants, with additional high fuel consumption benefits. Can be considered as BAT with main limitations the high initial capital cost (although there may be fuel cost benefits in the long run) and the fact that it is not at mass production yet. Potential to be further established in the future.
DOC	 Reduces PM less than other options, but it has low installation cost and no specific limitations or maintenance requirements. Possible increase of NO₂ fraction of total NO_x. Can be considered as BAT (e.g. retrofits in large-scale applications) being more tolerant to fuel sulfur than DPF and when other technical factors exclude the applicability of DPFs.
21	Serie de la companya

Asse	essment – 2/2
Going t	to light green
LNG	 Conversion of a ship to run on natural gas (LNG) can lead to NO_x reduction, but technical complications, fuel availability, and high initial capital costs are limiting factors. Moreover, gas tanks may limit vessel storage space and increase weight. CH₄ emissions are usually increased. Hence, LNG is a BAT especially for OEM applications, but as a retrofit, substantial modifications are required and the experience is limited.
EGR	 EGR in diesel vessels may achieve NO_x reduction efficiency which can be higher than in road vehicles. Slightly reduces engine power. EGR for ships is not a mature technology yet and there are many drawbacks and limited use as a retrofit.
25	Ser emsia

Lean NOx Trap (LNT)22Selective Catalytic Reduction (SCR)33Diesel Oxidation Catalyst (DOC)21	F 0 1	N 1 3	HDVs R -1	F 0	NRI N	VIM/I R -1	Rail F 0	V N 1	R	ls F
Exhaust Gas Recirculation (EGR)1-1Lean NOx Trap (LNT)22Selective Catalytic Reduction (SCR)33Diesel Oxidation Catalyst (DOC)21	0 1 2	1	-1	-			-			F
Lean NOx Trap (LNT)22Selective Catalytic Reduction (SCR)33Diesel Oxidation Catalyst (DOC)21	1			0	1	-1	0	1	1	
Selective Catalytic Reduction (SCR)33Diesel Oxidation Catalyst (DOC)21	2	3						-	-1	0
Diesel Oxidation Catalyst (DOC) 2 1	-	3								
	0		3	2	3	3	2	3	3	2
Diosol Darticlo Eiltor (DDE) 2 2	0	2	2	0	2	1	0			
Dieser Particle Filler (DFF) 5 5	2	3	3	2	3	3	2	1	0	0
Compressed Natural Gas (CNG) 3 1	2	3	1	2	2	1	2			
Liquefied Natural Gas (LNG)		2	1	1	2	1	1	3	1	2
Electrification 2 -3	3	1	-3	2	1	-3	3			
Hybridization 1 0	2	1	0	2	1	0	2			

Explanation of score values

- → -3: Least cost-effective technique with low environmental benefit or not applicable (due to technical, economical, or other limitations).
- ✤ 0: Technique with neutral impact.
- 3: Most cost-effective technique with high environmental benefit. Technical, economical, or other limitations may exist, but interventions to pass the threshold for implementation already exist or should be further supported in the future.

6