COMBUSTION PLANTS USING NON-COMMERCIAL FUELS IN CHEMICAL INDUSTRY

CEFIC

NOTE: BREF LCP AND EGTEI STUDY DON'T COVER PROCESS FURNACES OR HEATERS

EGTEI - Nice - 18 October 2013

COMBUSTION PLANTS IN CHEMICAL INDUSTRY

- □ Capacity: 50 to 250 MWth of steam to support the production of the chemical plant in all situations that may occur during industrial operations.
- ☐ Utility boilers located inside the chemical plant.
- ☐ Combined Heat-Power plant (CHP) different from combined cycle (CCGT).
- ☐ Non commercial fuel as by product of the process.
- ☐ Multi fuel firing in variable range and composition.

EGTEI - Nice - 18 October 2013

TOTAL

PARTICULARITIES OF UTILITY BOILERS

- ☐ Variable load operation due to the process: exceptional, start up, shut down
- ☐ Variable fuel composition and back up fuels.
- ☐ Daily emissions may be very higher from yearly average values.
- ☐ Some BAT not feasible for exceptional operation situations.
- ☐ Layout of existing installations that don't allow for retrofitting with some BAT.
- ☐ Restricted size of the firebox that may hamper for installation of some BAT.
- ☐ Reduced performances of BAT in existing installations.

TOTAL

EGTEI - Nice - 18 October 2013

PARTICULARITIES OF NON COMMERCIAL FUELS

- ☐ Variable availability of fuels: multi-fuel firing, fuels switch, flexibility
- $\hfill \Box$ Variable composition due to process : Hydrogen, Nitrogen, sulfur, ash, catalytic fines, metals,...
- □ NOx emission performance with primary measures

EGTEI - Nice - 18 October 2013

TOTAL

COMMENTS ABOUT BREF LCP D1 - FIGURE 8.6

Figure 8.6: NC-fuel-fired boilers - NO_X emission concentrations; yearly averages; 5^{th} and 95^{th} percentiles of short-term values are represented as span bars

Table 10.39: BAT-associated emission levels for NO_X from the combustion plants using chemical industry process fuels, including the mixtures with other fuels

Fuel	Pollutant	Unit	BAT-AEL		Monitoring	
			Yearly average	Daily average	Trequency	Not Consistent
Mixture of gases and/or liquids	NO _X NH ₃	mg/Nm³	70 – 200 ⁽¹⁾⁽²⁾ <1 – 5 ⁽³⁾	90 - 250 (1)(2) ND	Continuous measurement	with data
CO \(\text{ND}\) (1) The lower end of the range is associated with the use of gas-prevailing fuel blends (H ₂ up to 72 % vol in gazes). (2) With the exception of introgen-rich liquid-prevailing fuel blends (N up to 24 % w/w in liquids) where the upper						collected
end of the yearly average rang (3) Ammonia emissions are as	ge is 380 mg/ sociated with	Nm ³ and no value the use of SCR a	is determined for daily a nd SNCR	verage.		

EGTEI - Nice - 18 October 2013

TOTAL

CONCLUSIONS

- □ Technical feasibility of BAT is highly dependent on the installations.
- ☐ Economical feasibility of BAT is not demonstrated for the exceptional case of operation.
- ☐ Particularities of non commercial fuel and multi fuel firing should lead to higher BAT AEL for daily average and yearly average as well.
- ☐ Cost of reduction techniques may be different for chemical sector than for power generation sector

EGTEI - Nice - 18 October 2013

TOTAL