PM abatement technologies applied in EECCA countries: study and analysis

S. Kakareka, O. Krukovskaja, T. Kukharchyk
An outline of contribution to the EGTEI

Institute for Nature Management
Minsk, Belarus
with support of IVL, Sweden

20th EGTEI Meeting
Warsaw, 22nd of November, 2011
Rationale:

1. IAM results are aimed at redistribution of abatement costs between sectors/countries, assessment of attainability of Gothenburg Protocol emission limits so uncertainties in IAM estimates (using GAINS and other models) affect policy.

2. Level of uncertainty of IAM estimates is different by region and for EECCA region is low.

3. Increase of emission/costs/impact assessment accuracy/reliability is necessary.

4. Current IAM parametrisation is made using basically WE technologies data/BAT; limited data for EECCA.
Goal of study:

- PM abatement techniques applicable in EECCA assessment for IAM models parametrization of PM in view of EECCA (on an example of Belarus).

Tasks:

- collection and analysis of data on PM control equipment production in EECCA;
- analysis of real and projected PM abatement efficiency;
- investment costs coefficients calculation.
Methodology:

- abatement equipment market study (analysis of costs of offers);
- facilities data study on abatement levels (actual and projected);
- calculation of investment costs coefficient (Cif).

Region:

Belarus (PM control equipment in operation and at market);
Russian Federation, the Ukraine (equipment market only).

Results:

Min/max abatement efficiencies and average investment coefficients per group of equipment and technology/sector.
Distribution of emission control equipment manufacturers in EECCA

- Russia: 80%
- Kazakhstan: 1%
- Ukraine: 11%
- Republic of Moldova: 1%
- Belarus: 7%

Small-scale production and implementation of projects under the order since 1925.

Over 150 manufacturers.
Greatest PM emission control equipment manufacturers in EECCA

Russia
• FINGO ENGINEERING, CJSC (all types)
• «Folter», SPE (cyclones, filters)
• IRIMEX, JSC (all types)
• “Giprogazoochistka” OJSC (all types)
• «Rankom-Energo», EPC (filters, electrostatic precipitators)
• STC «Zenith», Ltd. (cyclones, scrubbers)
• «SPA «Talnakh», JSC (cyclones, scrubbers, filters)
• «Siberian association of energy engineering», Ltd. (cyclones)
• «ALYUMATEK», GC (all types)

Belarus
• «BELKOTLOMASH», SPE LLC (cyclones)
• «Belenergoremnaladka», JSC (filters, electrostatic precipitators)

Ukraine
• «Berdichev Machine Building Plant «Progress», TH (cyclones, filters, electrostatic precipitators)
• ARTEMOVSKIY MASHINOSTRAITELINYY PLANT «PROMMASH», Ltd. (cyclones)
• «Gas Cleaning Equipment Plant» Ltd. (cyclones, scrubbers, filters)
PM control equipment standards

USSR

GOST 12.2.043-80. Dust equipment. Classification

GOST 25199-82. (CMEA Standard 2145-80) Dust equipment. Terms and definitions.

Purposes of use
- Air filter for forced ventilation
- Dust collector for emission

Types and subtypes
- **Dry**
 - Gravitational/inertial/filtration/electrostatic
- **Wet**
 - Gravitational/filtration/electrostatic

Dust abatement efficiency for particles of different size groups (I-V)

Belarus

«Rules of operation for gas treatment facilities»

General types
- Inefficiency criteria
PM control equipment features and specific condition

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Design features</th>
<th>Specific conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclone</td>
<td>Angles
Diameters
Ratio between the elements</td>
<td>Abrasive dust
Danger of explosion
Working outdoors</td>
</tr>
<tr>
<td>Dry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inertial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrubber</td>
<td>Angles
Diameters
Ratio between the elements</td>
<td>Abrasive dust
Danger of explosion
Working outdoors
Solvents</td>
</tr>
<tr>
<td>Wet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inertial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter</td>
<td>Regeneration
Materials</td>
<td>Abrasive dust
Danger of explosion
Working outdoors</td>
</tr>
<tr>
<td>Dry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrostatic precipitator</td>
<td>Number of fields
Placement (horizontal/vertical)</td>
<td>Danger of explosion
Working outdoors
Productivity</td>
</tr>
<tr>
<td>Dry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrostatic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performances and costs range for main types of abatement equipment

Cyclones
Performance: up to 400 thousand m3/h, cost ranges: up to 220 thousand US$

Wet scrubbers
Performance: up to 280 thousand m3/h, cost ranges: up to 105 thousand US$

Fabric filters
Performance: up to 40 thousand m3/h, cost ranges: up to 45 thousand US$

Electrostatic precipitator
Performance: up to 1020 thousand m3/h, cost ranges: up to 285 thousand US$
Data on more than 700 models of control equipment from EECCA countries were compiled into database including: capacity, weight, efficiency, cost parameters etc.
Variability of unit costs of abatement depending on type of equipment

Wet Scrubber

- Unit cost, Euro
- Flow rate, 1000m³/hour

ESP

- Unit cost, Euro
- Flow rate, 1000m³/hour

Cyclone

- Unit cost, Euro
- Flow rate, 1000m³/hour

Fabric Filter

- Unit cost, Euro
- Flow rate, 1000m³/hour
Comparative investment costs coefficient c_i^f variability by type of control equipment
Abatement efficiency variability by type of control equipment

Cement

Lime Production

Cast Iron

Electric Arc Furnace

- ESP3P
- FF
- CYC
- WSCRB

Min, Mean, Max
Types of PM equipment abatement efficiency

- **Nominal**
 - Maximum for type/subtype
 - New equipment
 - Taken from manufacturers offers

- **Projected**
 - Calculated for specific operation conditions
 - New equipment
 - Taken from equipment Installation projects

- **Real**
 - Estimated for the exploited control equipment
 - Operated: up to 15-20 years
 - Taken from equipment documentation
Derived TSP EFs and PM abatement efficiency by countries (WebDab, 2006)

Abatement efficiency, %
Conclusions:

- significant variability of PM control equipment characteristics produced in EECCA (efficiency, performance, design etc) detected;
- variability of control equipment investment cost parameters; not normal distribution (bias of means);
- lack of unified methodology for the calculation of investment cost parameters for IAM;
- different measures of PM abatement efficiency: nominal, projected, real; all can be used in IAM;
- possible application of different types of abatement efficiencies results in increase of uncertainties of emission/costs IAM assessments.
Further steps:

- preparation of analytical paper on PM abatement equipment in EECCA (on an example of Belarus);

- assessment of uncertainties of emission/costs estimation possible impact onto policy.
Thank you for your attention!