
EGTEI

Emerging technologies/ techniques for LCPs up to 2030 (LCP > 500 MWth)

Pierre Kerdoncuff
(French Agency for Environment and Energy
Management)

EGTEI was mandated by UN ECE to:

Ø Initiate some work on emerging technologies/techniques in order to assess what could be done technically and economically to reduce air emissions from large combustion plants (LCP) up to 2030

Improvement in the modelling by:

- Ø Replacing the current assumption with information from the technical improvements of existing technologies and abatement techniques
- Ø Considering the impacts and costs of emerging technologies/techniques on emission reduction over time

Objective of the LCP2030 subgroup

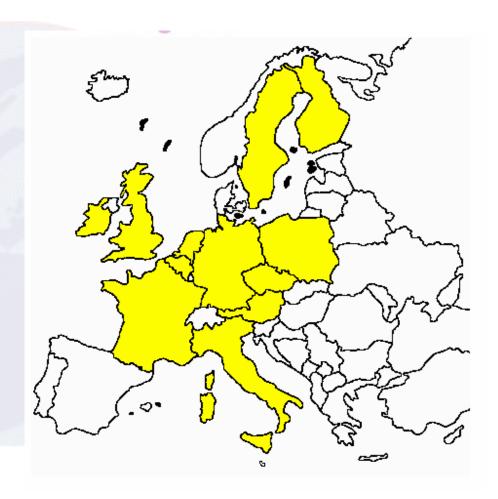
- ØProvide technical and economical information for modelling work on:
 - Emerging technologies and abatement techniques
 - Emerging applications of existing abatement techniques
 - Improvement of existing technologies and abatement techniques

"Emerging" techniques or technologies: not yet commercialized or in a early stage of commercialization

Focus on:

- Ø Their techno-economic characterisation (environmental performances, efficiency and CO₂ impact, costs, rate of penetration,...)
- \varnothing LCP > 500 MWth
- Ø Primary and secondary measures. Combinations of primary and secondary measures or combinations abating several pollutants at a time may also be considered.
- \varnothing PM, SO_x, NO_x and CO₂ abatement

Methodology:


- Ø Identification of documents and studies:
 - IPPC BREF on LCP
 - EU-project "Assessment of the air emissions impact of emerging technologies" 2003/2004
 - Documents on Carbon Capture and Storage (CCS)
- Ø Proposition of a list of potential technologies/techniques and review by the experts in order to identify technologies / techniques to be analysed with high priority
- Ø Collect of information from LCP2030 subgroup experts or from interview of other experts

Experts:

Ø Industrial experts: EDF, RWE npower, EDIPOWER, BOT Gornictwo i Energetyka SA...

Ø Administration experts: ENEA, ECN, Swedish EPA, Federal Environmental Agency Austria, Finish Environment Institute...

Main views of the experts on emerging technology

- Ø IGCC (Integrated gasification combined cycle)
 - The net efficiency for existing IGCC plants operating on coal is around 43% (LHV basis). IGCC could reach 50% efficiency around 2015.
 - Investment is estimated between 1 and 1.5 M

 MWWth (demonstration plant). A study from IEA considers the specific investment of IGCC is about 20% higher than that of pulverized combustion.
 - IGCC technologies could be commercially available around 2020 with CCS.

Ø Oxy-combustion

- Oxy-combustion enables the capture of CO₂ by direct compression of the flue gas without further chemical capture or separation.
- Several 10 to 50 MW mock-up plants worldwide are planned up to 2010, with 100 to 500 MW units possible around 2015. Oxy-combustion technologies could be commercially available around 2020.
- Oxy-combustion process leads to the decrease of NOx emissions.

Main views of the experts on emerging abatement techniques

Ø Flowpac (Alstom)

- Flowpac is a promising end-of-pipe desulphurisation (wet FGD) technology using a bubbling technology instead of circulation pumps. Flowpac results in a low capital cost.
- The electrical consumption is lower in the Flowpac (1.3% of the power capacity) than in the classical wet FGD (1.7/1.75%).
- The system is currently implemented in oil-fired plants (< 340 MWe) and needs to be demonstrated with coal-fired plants.

OCO₂ abatement techniques

- There are three types of CO₂ capture processes: post-combustion, oxy-combustion, pre-combustion
- CO₂ capture and storage (CCS) in power plants is being demonstrated in a few small-scale pilot plants. Largescale demonstration plants with CCS are planned by around 2015 with the objective of developing CCS by 2020
- CCS costs are highly project specific. The objective is to reduce CCS costs to below 25€tCO₂ avoided by 2030.

Main views of the experts on improvement of existing technologies

- ØOne of the ways of reducing the emissions of CO₂ from fossil fuel fired power plants is to **improve the overall efficiency** of plants. Because of the penalty of CO₂ capture, **CCS makes** sense only for highly efficient plants.
- ØThe improvement of the following existing technologies were considered by the experts:
 - Coal-fired power plant
 - Combined Cycle Gas Turbine (CCGT)

Ø Coal-fired power plant

- Sub-critical coal-fired power plants can achieve efficiencies of up to 40% and supercritical and ultrasupercritical of up to 45%.
- From **2020**, coal-fired power plants with advanced steam cycle (350 bar, 700°C) could reach **efficiency of above 50%.**
- The challenge is the development of materials (nickel based alloys).

O Combined Cycle Gas Turbine (CCGT)

• The average efficiency of a 400 MWe combined cycle gas turbine (CCGT) is about 58%. In 2015, efficiency of 62% could be commercially available. In 2035, CCGT should reach, commercially, an efficiency of 70% by improving the component efficiencies and using new materials.

Ombined Cycle Gas Turbine (CCGT)

- The increase of efficiency will follow the increase of the capacity of units. At present, the CCGT units (F technology) have a capacity of 430 MWe (in CCGT configuration). Technology of the H generation has a capacity of 530 MWe. Experts assess that the CCGT units could reach capacities of 600 to 700 MWe in the future.
- The most recently build plants are able to reach 20 mg/Nm³ without SCR.

In the report, more information is available on:

- ØEmerging applications of existing abatement techniques (SO₃ injection to reduce PM emissions)
- ØCosts and performances of abatement techniques of existing installations
- ØImpact of energy efficiency increase on CO₂ and pollutant emissions
- ØImpact of energy efficiency and plant sizes on costs
- Ø...

Future work:

- ØSome technologies/techniques (e.g. catalytic combustion), were considered as outside the scope of the LCP2030 subgroup which considered only power plants with capacities higher than 500 MWth.
- ØFuture work of the subgroup will consider lower capacities of the large combustion plants (> 50 MWth).

Thank you for your attention

Report available on the following website:

http://www.citepa.org/forums/egtei/egtei_LCP2030.htm

Contact: - Nathalie THYBAUD

nathalie.thybaud@ademe.fr

- Pierre KERDONCUFF

pierre.kerdoncuff@ademe.fr